

Professional Bachelor Applied
Information Technology

1

Eindwerk Academiejaar 2018 - 2019

Integration of popular calendars

Sinan Samet

Supervisors:

Mr. Mitch Dries Otys

Mr. Johan Cleuren PXL University of Applied Sciences and Arts

Recruitment Technology Otys - Sinan Samet 2

Recruitment Technology Otys - Sinan Samet 3

Professional Bachelor Applied

Information Technology

Integration of popular calendars

Sinan Samet

Supervisors:

Mr. Mitch Dries Otys

Mr. Johan Cleuren PXL University of Applied Sciences and Arts

Recruitment Technology Otys - Sinan Samet 4

Acknowledgements

Het is een periode met up en downs geweest. Ik heb hier enorm veel bijgeleerd, niet alleen

in de vorm van programmeren, maar ook in de vorm van cultuur en zelfontwikkeling. De

dingen die mij het meest bij zijn gebleven zijn onder andere het StuddyBuddy programma, en

natuurlijk mijn stageperiode. Mijn stage was een periode dat veel sneller is voorbijgegaan

dan verwacht. De drie maanden dat ik er was zijn voorbij gevlogen.

Er zijn vele mensen geweest die mij geholpen hebben bij het realiseren van mijn eindwerk te

veel om ze allemaal op te noemen. Daaronder wil ik graag de volgende personen nog in het

bijzonder bedanken.

Als eerst Marijke Willems en Johan Cleuren die mij de kans aan hebben geboden om stage

te mogen lopen in Praag. Ze hebben mij beide immens veel geholpen, niet alleen door

feedback te geven, maar ook door elk moment dat het even niet mee zat, snel te reageren

en een oplossing te vinden. Dit heeft mijn stressvolle tijden altijd in een klap weer omgezet

naar een gemotiveerde sfeer. Het was mij zonder hun niet gelukt om hier te komen.

Mijn dank aan Otys voor de leerrijke ervaring die ik er heb opgedaan. Buiten dat ik er veel

heb geleerd is ook altijd iedereen vriendelijk geweest en heb ik er veel leuke momenten met

ze kunnen beleven. Het was niet alleen werken met de collega’s, maar ook samen feesten

en lachen.

Ik wil ook graag mijn ouders bedanken die altijd achter mij hebben gestaan, in mij geloofd

hebben en mij ondersteund hebben, meer dan dat ik had kunnen willen.

Mijn dank aan hun en mijn vriendin die mij zijn komen bezoeken in Praag zodat ik ook

onvergetelijke tijden met hun hier kon beleven.

Eveneens wil ik mijn vrienden bedanken die mij ook altijd de motivatie en inspiratie hebben

gegeven om door te gaan.

Daarbij wil ik nog iedereen die mij direct of indirect geholpen hebben zoals de vele

seminaries en andere iTalent invloeden bedanken.

Iedereen, enorm bedankt!

Recruitment Technology Otys - Sinan Samet 5

Abstract

In this bachelor project Google Calendar and Outlook Calendar are implemented into the

Otys Calendar feature. This helps to keep everything in one place and avoid the complex

situation of having to use multiple calendar applications just to see if something is planned.

To integrate these calendars, CalDav is used. CalDav is a service that allows calendars to

easily communicate with each other so they can be synchronised in an orderly way. Once

one calendar has been made available for integration, it is easier to implement many of the

other possible calendars.

Fortunately, Google Calendar is already preconfigured in CalDav synchroniser, but it is also

possible to implement a custom calendar.

To integrate the Outlook Calendar, the new Microsoft Graph API is used with its many great

features.

As for the research part, it is not necessary to make a large application in AngularJS, but

rather in the new Angular instead. Large web applications made in Angular JS have the

tendency to be less structured and slow. This causes employees to make progress in a much

slower pace as everything is just rather hard to find in the AngularJS code. This is mostly

because, AngularJS is not meant to contain such a large project. Instead, Angular 4 is the

best option for large scale projects.

The research focuses on the migration of the whole project from AngularJS to Angular. With

NgUpgrade it is possible to upgrade the project in a hybrid way. This way it is possible to

gradually migrate to the new version component by component. The goal of the research is

to describe both the best method to achieve a smooth migration as the pitfalls of this

process. This is documented with a proof of concept in which one module is migrated from

AngularJS to Angular.

Recruitment Technology Otys - Sinan Samet 6

Table of contents

Acknowledgements 4

Abstract 5

Table of contents 6

List of used images 8

List of tables 9

List of abbreviations 10

Introduction 11

1 Traineeship report 12

1.1 About Otys 12

2 Internship assignment 13

2.1 The problem 13

2.2 The goal 13

2.3 Environment 13

2.3.1 Existing version of Google Calendar 13

2.3.2 Database 13

2.3.3 AngularJS 13

2.3.4 JavaScript, HTML and CSS 14

2.3.5 PHP 14

2.3.6 CalDav 14

2.3.7 IDE 14

2.4 The development processes 15

2.4.1 Integrating the existing version 15

2.4.2 Creating the cronjob (Daemon) script 23

2.4.3 Integrating Outlook Calendar 24

2.4.4 The parser 28

2.4.5 The connection 31

2.4.6 OAuth verification 32

2.4.7 The comparator 32

3 Reflection 33

4 Research topic 34

5 Research method 34

5.1 Total conversion 34

Recruitment Technology Otys - Sinan Samet 7

5.2 ng-forward 35

5.3 ngUpgrade 35

5.4 Hybrid Router 36

6 Elaborating on the research 37

6.1 What is the AngularJS framework? [2] 37

6.2 What is Angular and how is it better? [4] 39

6.2.1 What is the Angular framework? 39

6.2.2 Why is it better than AngularJS? 39

6.2.2.1 JavaScript vs Typescript 39

6.2.2.2 Speed performance of AngularJS vs Angular 39

6.2.2.3 The learning curve of AngularJS vs Angular [5] 39

6.2.2.4 The ahead of time (AOT) compiler of Angular [6] 40

6.2.2.5 Angular components 40

6.2.2.6 Babel 40

6.2.2.7 Webpack 40

6.3 Preparing the migration from AngularJS to Angular [3] 41

6.4 Conclusion 52

References 53

Recruitment Technology Otys - Sinan Samet 8

List of used images

Figure 1: OAuth table structure ...15

Figure 2: OAuth table example ...15

Figure 3: Google synchronisation setting ..16

Figure 4: Granting permission ..16

Figure 5: Choosing account in Google ..17

Figure 6: Confirming access ...17

Figure 7: Setting the calendar ID ..17

Figure 8: Granted permission to Google ...18

Figure 9: The strategy pattern ..18

Figure 10: Folder structure with the implementation of the design pattern19

Figure 11: iConnection interface ...19

Figure 12: getComparison being called ..20

Figure 13: Implementing iConnection ...20

Figure 14: Singleton pattern ...20

Figure 15: getComparison method ...21

Figure 16: New structure ..21

Figure 17: Old structure ..21

Figure 18: addEventService in Caldav ..22

Figure 19: addEventService in Outlook ..22

Figure 20: Cron script ...23

Figure 21: iConnection.php ..25

Figure 22: iComparison ..26

Figure 23: OutlookConnection ..26

Figure 24: CalendarSynchroniser ...27

Figure 25: Data binding example ..38

Figure 26: Error because define is used in a wrong way ...45

Figure 27: Compiled JavaScript code ...46

Figure 28: Code to the entry file ...46

Figure 29: Example AMD code ...47

Figure 30: Example ES6 code ..48

file:///C:/Users/User/Desktop/Stage/AONEindwerk_Sinan_Samet%20v2.docx%23_Toc9607743
file:///C:/Users/User/Desktop/Stage/AONEindwerk_Sinan_Samet%20v2.docx%23_Toc9607745
file:///C:/Users/User/Desktop/Stage/AONEindwerk_Sinan_Samet%20v2.docx%23_Toc9607746

Recruitment Technology Otys - Sinan Samet 9

List of tables

Table 1: List of abbreviations ..10

Recruitment Technology Otys - Sinan Samet 10

List of abbreviations

Acronym Definition

AOT Ahead of Time

HTML Hypertext Transfer Mark-up Language

CSS Cascading Style Sheets

PHP PHP: Hypertext Pre-processor

JS JavaScript

IDE Integrated Development Environment

AMD Asynchronous Module Definition

ES6 ECMASCRIPT 6

NPM Node Package Manager

SOLID Single responsibility, Open closed, Liskov
substitution, Interface Segregation,
Dependency inversion

CTag Content tag

ID Identification

Table 1: List of abbreviations

Recruitment Technology Otys - Sinan Samet 11

Introduction

In this thesis I explain about what I did during my internship at Otys in Prague. It contains

both my task for the internship and my research.

The task for my internship I got assigned was to implement different services like Google

calendar and Outlook calendar to the Otys calendar. This way it became possible to

synchronise all three of these calendars, so, that there is no more need to switch between

them. This is a very useful functionality and it was a very interesting project to work on. I

learned to tackle problems in a different way than I was used to and most of all it helped me

be a better problem solver.

My research in this thesis is about migrating AngularJS to Angular. I chose to research this

subject because, I believe it will be a very valuable step for Otys and I think it can make a

breaking change to the company. It seemed like a great idea to me to be a part of this.

Recruitment Technology Otys - Sinan Samet 12

1 Traineeship report

1.1 About Otys

The life of recruiters can be hard if everything has to be done manually. There is a lot of data

to be tracked and it is easy to lose sight over this. It is also of importance that the people they

recruit are valuable for the company. But how will they know if this is true, and where can

they find such people?

This is where Otys steps in. Otys is a company that works on perfecting their recruiting

software in which everything related to recruiting has to be covered. For this reason, the life

of a recruiter using this software will be a lot better.

Because the process is then optimized, and a big part of it is automated it will be possible to

give the customers and candidates more attention. On top of this they will not only have

more but also better matches that suit the needs of the company.

Recruitment Technology Otys - Sinan Samet 13

2 Internship assignment

2.1 The problem

Otys has a calendar feature in which people can add appointments, days off, birthdays and

so forth. But people want to use their trusted calendar service which they use on their phone

or other devices in their daily lives and not keep switching between calendars and see

different things. That is how the problem exists of not being able to manage all calendars

inside one calendar.

2.2 The goal

So, since the current situation is that the Otys calendar only has its own data, the goal is to

integrate both the Google Calendar and the Office 365 Calendar. Fortunately, the Google

Calendar integration is already developed but this is explained later. So, it should be possible

to synchronise both these calendars so, that all the data can be seen on just one calendar.

2.3 Environment

2.3.1 Existing version of Google Calendar

As mentioned before, the Google Calendar version is already present. It was made a year

ago by an intern from PXL. The problem is that he did not integrate it into the application. So,

the task is to integrate the Google Calendar into the software and afterwards create and

integrate the Office 365 version.

2.3.2 Database

The settings of the synchronisation of this module can be retrieved from MongoDB. This is

because the settings in Otys are all handled in MongoDB. The rest of it is done in MySQL

using the IDE Navicat.

2.3.3 AngularJS

The frontend is made in AngularJS, but there is not much work to do in there because the

calendar already exists. All that has to be done is writing some functions to synchronise it

with the services of Google Calendar and Office 365 Calendar. Most of the work is done in

the backend so that in the frontend, the backend can be called. The backend will then

provide all data to the frontend.

Recruitment Technology Otys - Sinan Samet 14

2.3.4 JavaScript, HTML and CSS

As mentioned before, the frontend is made with the framework AngularJS, specifically

version 1.3. The languages used in AngularJS are HTML, CSS and JavaScript. Besides this

the framework structure itself also has to be known. However, this is not used much for the

task of syncing the calendar module.

2.3.5 PHP

PHP is the main language used in the backend in Otys. It is a language which offers to

program in OOP or just procedural if desired. Fortunately, since the scale of the project is

this large, the PHP used in this company is OOP based. However, unfortunately Otys is not

using any framework for PHP and this might make things difficult as the structure of the

project is custom made.

The job that PHP will do within this task is provide the layer between the frontend and the

calendar services Office 365 and Google Calendar. Also, the calls to the database will again

be made in PHP.

2.3.6 CalDav

CalDav is the suggested service by the company to use to handle this task. It is a plugin that

helps the synchronisation between Google Calendar, Outlook and many other calendar

services. This service makes the two-way synchronisation much easier and deplete the need

of setting up basic functions just to get to the main work done.

2.3.7 IDE

The IDE that is mainly used in Otys is PHPStorm. PHPStorm is a text editor to develop

programs as it indexes everything and makes it easier to go to where a specific function is

defined and where it is called. Of course, there are many more features this software

provides to make programming easier. A disadvantage of this IDE is that it starts up slowly.

For that reason, Visual Code was also used to assist PHPStorm in the features that it is

missing. It starts up much faster and it capable of searching for specific words with good filter

options. The downside of Visual Code is that it does not index the project and because of

this, it cannot link from a function to its definition or the other way around.

To keep track of the database, Navicat was used as IDE which is a great application to

manage databases and has everything that is needed.

Recruitment Technology Otys - Sinan Samet 15

2.4 The development processes

2.4.1 Integrating the existing version

To start integrating the existing version, its function and code is researched. It is a completely

stand-alone application which is ready to integrate into the Otys application. Part of the

CalDav application is already integrated by a developer of Otys. So, the integration started

from the place the developer left off.

There is a need to keep in mind that the Outlook Calendar also needs to be integrated.

However, the focus for now is to just integrate the CalDav Calendar and after that to look on

how to make it generic so that it will be possible to add more services to it.

First, there is a separate database which needs to be implemented into the Otys database.

For the tokens there is already a table with a proper structure. The data for all tokens is

inserted in that table.

Figure 1 illustrates the structure of the tokens table:

Figure 1: OAuth table structure

And the currently existing table moved to the Otys database can be seen in figure 2:

Figure 2: OAuth table example

In figure 2, refresh tokens as well as access tokens can be seen. These are of course moved

to the Oauth table shown above it. Google calendars requires a calendar ID and a CTAG for

the purpose of synchronising efficiently. These values are still kept in the moved table and

used from there. The same approach is used for the Outlook Calendar although it does look

a little different since they are generalised, the differences are made alike so that it will not

cause errors.

Recruitment Technology Otys - Sinan Samet 16

After setting up the database correctly, the application is moved as well. The application is

made keeping the Otys software in mind, so it is possible to just move the service into the

services, the model to the models and the application to the features folder. To make the

connection from the backend to the frontend, the service is called from the frontend.

So, at the frontend search for the setting “Google calendar synchronisation” like shown in

figure 3.

Figure 3: Google synchronisation setting

When pressed on the setting, the button “Grant Permission” will be visible.

Figure 4: Granting permission

After pressing on that, it will show options of accounts to choose from which can be linked to

the Otys calendar.

Recruitment Technology Otys - Sinan Samet 17

Figure 5: Choosing account in Google

Figure 6: Confirming access

When that is done, it will return to the Otys page and since Google Calendar requires a

calendar ID, it will also ask to fill in the calendar ID of the user.

Figure 7: Setting the calendar ID

Recruitment Technology Otys - Sinan Samet 18

The user has to fill in the email-address of the account used for the calendar to allow access

to the default calendar. After that has been done, the user has to press “Save” which can be

seen in figure 7. Once that has been done, the agenda will synchronise. It is then possible to

manually synchronise by either clicking the “Synchronise” button or just let the cronjob do its

job of synchronising every five minutes. This process is explained in 2.4.2.

Figure 8: Granted permission to Google

It is also possible to revoke the agenda in which case the Google events will be removed.

From here on out, the integration of Outlook started. To integrate Outlook, the first thing that

came to mind was the fact that there will be another service added. Since there is a need for

this now, it might mean that there will also be a need for it with a new service in the future.

For that reason, it was wise to implement a design pattern. Specifically, the pattern

“Strategy”.

Figure 9: The strategy pattern

Recruitment Technology Otys - Sinan Samet 19

If you refer to figure 9, it is possible to see how this would work in the case of the

synchronisation feature. “Strategy” stands for the interface. The services like Google and

Outlook, implement this interface. The synchronisation application implements the interface,

instead of the services. That way there is no more need to use an “if” or a “switch” statement.

The structure of the directories containing services look a lot better after this upgrade as you

can see in figure 10.

Figure 10: Folder structure with the implementation of the design pattern

Every service that derives from the iConnection class also needs the class of their service

from iEventParser, and iComparison. This can now be easily done since the design pattern

was implemented. Inside the connection service, the services needed, are instantiated.

When the synchroniser needs parser or comparator, it will be called through the connection.

The connection has a method to call the parser or comparator like shown in figure 11:

Figure 11: iConnection interface

Recruitment Technology Otys - Sinan Samet 20

It is then possible to call for that method within the synchroniser:

Figure 12: getComparison being called

It is also possible to see that the type of the connection is not the name of the server, but the

name of the interface. This assures that “$connection” is always of the type iConnection.

Within each service, iConnection is implemented:

Figure 13: Implementing iConnection

When instantiating the connection, the connection is made with the Singleton pattern. This

assures that there will be one and only one instance of the connection:

Figure 14: Singleton pattern

Recruitment Technology Otys - Sinan Samet 21

Then within the same service, the class needed by it can be called through its method like

shown in the next figure:

Figure 15: getComparison method

When you compare the old structure to the new one, it is easy to see that it is a lot better.

Before After

Figure 17: Old structure

Now it is a lot easier to add a new service to the synchroniser when needed.

Figure 16: New structure

Recruitment Technology Otys - Sinan Samet 22

It is also worthy to mention, that Google Caldav should be updated to the new Google

Calendar API. Google Caldav seems to be very old, hard to work in, and very complex.

Using the new API will make things much easier and keep the application bug free. The

Outlook API is a great example of this. You can compare the Outlook API with the new

Google Calendar API.

Outlook Google Caldav

As it can be seen. The Outlook version is a lot shorter and much easier to understand. That

means that it is less likely to be bugs in there and if there are bugs, they will be easier to fix.

Figure 19: addEventService in Outlook

Figure 18: addEventService in Caldav

Recruitment Technology Otys - Sinan Samet 23

2.4.2 Creating the cronjob (Daemon) script

Another task of this project was to use a daemon script which ensures that the script is

executed for a certain period of time. This period can be set using a crontab. This is the line

of code in the crontab looks:

*/30 * * * * otys /usr/bin/php /data/otys-

daemons/daemons/scripts/synchronise_calendars.php 21

The period is defined by the first part “*/1 * * * * “. Each space means that the next value is

targeted. The first value is minutes which is from 0 to 59. An asterisk means that it is for

every minute. Every minute divided by 30 means every 30 minutes. If it is not divided by 30,

it would take every 30th minute. So, in this line of code the script “otys /usr/bin/php /data/otys-

daemons/daemons/scripts/synchronise_calendars.php” with parameter “21” is called every

30 minutes, every hour, every day, every month and every year.

Figure 20: Cron script

This is how the script itself looks. This is the script that is called for every certain period of

time. With “$argb[1]” the first parameter is called which was “21” in the example code shown

above. Then there is a database connection made and all places where “refresh_token” is

available (in other words, the user has granted access) the

Recruitment Technology Otys - Sinan Samet 24

“synchroniseUserCalendarsFromCron()” function will be running. To test this piece of code

the “php” command can be used in the terminal to see if it works or if it gives errors.

2.4.3 Integrating Outlook Calendar

The largest part of the project was to integrate the Outlook Calendar. This part is so large

because almost everything is made from scratch. Fortunately, the structure was already

made, so using the example of the Google Calendar service a lot of things are copied and

adjusted to work with Outlook. However, since the Google API is different it still took a lot of

changes to make it work.

The link to the API given in the project task is: https://docs.microsoft.com/en-us/previous-

versions/office/office-365-api/api/version-2.0/calendar-rest-operations. But this link was not

usable anymore and it took some time to find that out. After making the OAuth connection,

when trying to connect to the calendar, it will give an error about that the link is wrong. This is

due to the fact that the Outlook OAuth connection expects a connection with the new Graph

API of Microsoft.

At first it was an off-putting thought because it is a different API than expected. But it is a

better API which offers much more functionality. The new API offers a “delta” feature. When

a call is made to request events, the request also gives a delta in the response. If this delta is

used in the next request, it calls all events with the exclusion of the events that were called in

the last request which gave this delta value. This makes it possible to make synchronisation

calls much more efficient.

The problem, however, is that the first call needs to contain a start date and an end date. The

events called will be in the range of these dates. The same parameters also apply on the

delta. This means that every time the end of the range is reached, the dates need to be

refreshed. The solution that is used for this problem is to call all events for the past and

coming five years. After five years the request will be renewed, and the new dates will be

called according to the past dates. Before doing this of course, it is mandatory to make a last

call using the old dates and new delta so, that all events of those dates are definitely called.

But before getting into all of this it was important to know that according to this task it is

possible that Otys might want more services to add to the calendar besides Google Calendar

and Outlook Calendar. Knowing that, this task is made in a way that more services can be

added. For this reason, interfaces have been used. So, that if there is a new service, all there

needs to be done is to plug in those interfaces and the new service will be easily added to

the calendar.

The first file that had to be compared was the “Google_Client.php” file. The most important

thing this file does is to manage the OAuth data. It is installed as a composer package, but

the problem is that Outlook does not provide the same package. That is why

“OutlookClient.php” also had to be made. To see which functions are needed in this file it

was useful to connect to the OutlookClient instead of the GoogleClient. Because of this, it is

now possible to see which functions are missing and which need to be changed.

https://docs.microsoft.com/en-us/previous-versions/office/office-365-api/api/version-2.0/calendar-rest-operations
https://docs.microsoft.com/en-us/previous-versions/office/office-365-api/api/version-2.0/calendar-rest-operations

Recruitment Technology Otys - Sinan Samet 25

Everything closed off from the service like connections to the Otys database and Otys

calendars are kept the same which is why they do not have a separate interface. They are

just made to run with all the services without needing to change them anymore.

There are 3 files that now have an interface because they are specifically made for the

service. These are: the parser, the connection to the service, and the comparison between

the service and the Otys Calendar. The connection is the first important one because that

one is needed first and will point to places it is missing.

This is how the iConnection.php interface looks:

Figure 21: iConnection.php

An important thing to mention is that if the OutlookConnection class is called which derives

from this interface, the comparator of Outlook is also called and there is never a need for

another comparator to call. The best solution to do this is to add a “getComparison();”

method. Which will return an “OutlookComparison()” class deriving from the “iComparison()”

interface. This method can be used to call the right service for the needed interface per

service every time.

However, since PHP 5.5 does not yet allow to typecast or return a specific type, PHPStorm

will give errors because it does not know that the returned type is the expected one and

cannot make a connection to its methods.

Recruitment Technology Otys - Sinan Samet 26

The same way in iComparison, the “getEventParser()” method will be called so that its

methods can be used.

Figure 22: iComparison

In the piece of code in the figure above of “OutlookConnection.php” it can be seen that this is

called as a Singleton to make sure that there is only one instance of this class. Same goes

for the other classes because it is not needed more than once. It can also be seen that the

“getComparison()” method calls a new OutlookSyncComparison() class. This connection will

be made at the beginning so that it can be accessed whenever it is needed.

Figure 23: OutlookConnection

Recruitment Technology Otys - Sinan Samet 27

So next, all files come together in the file “CalendarSynchroniser.php”. This is the actual

“application” file that executes everything.

Figure 24: CalendarSynchroniser

In the figure above in the constructor can be seen that every class first gets initialised. So,

that they are ready to use once the application (the synchroniseUserCalendars() function) is

executed. The basic user and OAuth connection information is set in the method itself.

Recruitment Technology Otys - Sinan Samet 28

2.4.4 The parser

Every service needs to have a parser since none of the calendar services will have the exact

same structure as the Otys calendar. What the parser essentially does is convert the event

from the service format to the Otys format. And from the Otys format to the service format.

To illustrate this an Outlook event is added to the Otys calendar. The JSON representation of

the Outlook event would look like this:

{
 "attendees": [{"@odata.type": "microsoft.graph.attendee"}],
 "body": {"@odata.type": "microsoft.graph.itemBody"},
 "bodyPreview": "string",
 "categories": ["string"],
 "changeKey": "string",
 "createdDateTime": "String (timestamp)",
 "end": {"@odata.type": "microsoft.graph.dateTimeTimeZone"},
 "hasAttachments": true,
 "iCalUId": "string",
 "id": "string (identifier)",
 "importance": "String",
 "isAllDay": true,
 "isCancelled": true,
 "isOrganizer": true,
 "isReminderOn": true,
 "lastModifiedDateTime": "String (timestamp)",
 "location": {"@odata.type": "microsoft.graph.location"},
 "locations": [{"@odata.type": "microsoft.graph.location"}],
 "onlineMeetingUrl": "string",
 "organizer": {"@odata.type": "microsoft.graph.recipient"},
 "originalEndTimeZone": "string",
 "originalStart": "String (timestamp)",
 "originalStartTimeZone": "string",
 "recurrence": {"@odata.type": "microsoft.graph.patternedRecurrence"},
 "reminderMinutesBeforeStart": 1024,
 "responseRequested": true,
 "responseStatus": {"@odata.type": "microsoft.graph.responseStatus"},
 "sensitivity": "String",
 "seriesMasterId": "string",
 "showAs": "String",
 "start": {"@odata.type": "microsoft.graph.dateTimeTimeZone"},
 "subject": "string",
 "type": "String",
 "webLink": "string",

 "attachments": [{ "@odata.type": "microsoft.graph.attachment" }],
 "calendar": { "@odata.type": "microsoft.graph.calendar" },
 "extensions": [{ "@odata.type": "microsoft.graph.extension" }],
 "instances": [{ "@odata.type": "microsoft.graph.event" }],
 "multiValueExtendedProperties": [{ "@odata.type": "microsoft.graph.multiValueLegacyExtendedProperty"
}],
 "singleValueExtendedProperties": [{ "@odata.type":
"microsoft.graph.singleValueLegacyExtendedProperty" }]

}

This does not match with the fields of an Otys event.

Recruitment Technology Otys - Sinan Samet 29

The fields of an Otys event look like this:

'id'=>'number',

'parent_id'=>'string',

'consultantid'=>'number',

'klantid'=>'number',

'begintijd'=>'number',

'eindtijd'=>'number',

'titel'=>'string',

'locatie'=>'string',

'omschrijving'=>'string',

'datumtoevoegen'=>'number',

'usertoevoegen'=>'number',

'datumaanpassen'=>'number',

'useraanpassen'=>'number',

'agendaitem_type'=>'string',

'prive'=>'boolean',

'whole_day'=>'boolean',

'uid'=>'string',

'etag'=>'string',

'repeat_count'=>'number',

'recurrence_type'=>'number',

'sequence'=>'number',

'raw_recurrence'=>'string',

Because they need to match each other in order to synchronise them with each other, the

events are just converted to the other side. That is where the parser comes in and does the

job of converting the event.

The hardest parts are not the parts of converting the columns themselves but converting the

parts that need special input. For example, recurrences. A recurrence within an event means

that the event is repeated over a specified period like weekly, monthly or yearly. And also, for

how many times it repeats. Like 2 weeks, 3 weeks, or maybe 10 weeks. The problem is that

every calendar handles this logic in a different way. In the piece of code above, it can be

seen that Otys just uses the fields ‘repeat_count’ and ‘recurrence_type’. Using these two

columns, Otys can make a calculation and execute the logic.

However, the way Outlook handles this is totally different. Instead of two columns, Outlook

expects a lot more details in order to be more dynamic. Here is an example of the JSON

representation of it:

 "recurrence": {
 "pattern": {
 "type": "weekly",
 "interval": 1,
 "daysOfWeek": ["Monday"]
 },
 "range": {
 "type": "endDate",
 "startDate": "2017-09-04",
 "endDate": "2017-12-31"
 }

Notice that there is a lot more logic to be handled in this.

Recruitment Technology Otys - Sinan Samet 30

It is harder to convert those parts between calendars than just plain text. The method created

to convert the recurrence of an Outlook event to the Otys event is like this:
private function serviceRecurrenceToOtys($recurrence){

 $otysRecurrence = [];

 switch ($recurrence['pattern']['type']){

 case "daily":

 $otysRecurrence['recurrence_type'] = 2; //Each day

 break;

 case "weekly":

 $otysRecurrence['recurrence_type'] = 3; //Each week

 break;

 case "absoluteMonthly":

 $otysRecurrence['recurrence_type'] = 8; //Each month

 break;

 case "absoluteYearly":

 $otysRecurrence['recurrence_type'] = 6; //Each year

 break;

 default: //Relative monthly and relative yearly doesn't exist in Otys

 $otysRecurrence['recurrence_type'] = 3;

 break;

 }

 if($recurrence['range']['type'] == "numbered"){

 $otysRecurrence['repeat_count'] = $recurrence['range']['numberOfOccurrences'];

 }

 else{

 $startDate = new \DateTime($recurrence['range']['startDate']);

 $endDate = new \DateTime($recurrence['range']['endDate']);

 switch ($otysRecurrence['recurrence_type']){

 case 2: //Each day

 $otysRecurrence['repeat_count'] = $startDate->diff($endDate)->d;

 break;

 case 3: //Each week

 $otysRecurrence['repeat_count'] = floor(($startDate->diff($endDate)->d)/7);

 break;

 case 8: //Each month

 $otysRecurrence['repeat_count'] = $startDate->diff($endDate)->m;

 break;

 case 6: //Each year

 $otysRecurrence['repeat_count'] = $startDate->diff($endDate)->y;

 break;

 }

 }

 return $otysRecurrence;

}

Here it can be seen that the many values that Outlook has, are being converted to just two

values in Otys. Of course, this means that some values need to be sacrificed and have a

default setting instead.

Recruitment Technology Otys - Sinan Samet 31

2.4.5 The connection

The connection classes are another important part of the communication between the

calendars. The logic of every traffic coming from the service is handled in here. The logic of

everything going to the Otys database is handled in the CalendarConnection.php file. That is

how those two are being separated to keep things more organised. CalendarConnection.php

does not need to be separated per service but rather is being called by the services instead,

because the Otys events always need to be added, updated or deleted the same way.

The connection classes derive from the interface iConnection.php and all have the purpose

to make the authentication and communicate with the API of the belonging service.

An example of this would be to add an event to the service (in this case to Outlook):

public function addEvent($vCalendar)

{

 $headers = array(

 'Content-Type: application/json; charset=utf-8',

 'Authorization: Bearer ' . $this->getAccessToken()

);

 $uri = 'https://graph.microsoft.com/v1.0/me/calendar/events';

 $doc = new \DOMDocument('1.0', 'utf-8');

 $doc->formatOutput = true;

 $event['id'] = $vCalendar['otys_id'];

 unset($vCalendar['otys_id']);

 unset($vCalendar['repeat_count']);

 unset($vCalendar['recurrence_type']);

 $ch = curl_init();

 curl_setopt($ch, CURLOPT_URL, $uri);

 curl_setopt($ch, CURLOPT_POST, 1);

 curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode($vCalendar));

 curl_setopt($ch, CURLOPT_VERBOSE, 1);

 curl_setopt($ch, CURLOPT_HTTPHEADER, $headers);

 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

 $response = curl_exec($ch);

 $response = json_decode($response);

 $this->db->updateEventUid($event, $response->id);

 $this->db->updateEventEtag($event, $response->{'@odata.etag'});

 curl_close($ch);

 return $response;

}

Recruitment Technology Otys - Sinan Samet 32

2.4.6 OAuth verification

The OAuth verification is used to authenticate to see which calendar is going to be used. It

asks the user to log in and accept the permissions that Otys needs in order to complete the

synchronisation tasks. This procedure is very straightforward once it has been done, the

information is saved to the database so that the connection can persist to exist. Every call to

the API needs the token given by OAuth in order to accept the requests.

2.4.7 The comparator

The comparator seems to be like the parser but is not. The parser converts the events from

one service to another. But the comparator checks if both the service and the Otys calendars

are the same. If they are, nothing has to be changed. If they are not, then actions need to be

taken. If there is an event deleted in the Otys calendar but still existing in the calendar of the

service, then steps need to be taken to remove the event in the service as well. All that kind

of logic is being handled by the comparator.

An example of that can be seen here:
private function getUidsToUpdate($fromInvites = false) {

 $uidsToUpdate = array();

 if (!$fromInvites) {

 foreach ($this->otysOwnedEtags as $id => $values) {

 $etag = $values['etag'];

 $uid = $values['uid'];

 if (array_key_exists($uid, $this->caldavEtags) && $etag != $this-

>caldavEtags[$uid] && $etag != 400) {

 $uidsToUpdate[] = array(

 'uid' => $uid,

 'id' => $id

);

 }

 }

 } else {

 foreach ($this->otysInvitedEtags as $id => $values) {

 $etag = $values['etag'];

 $uid = $values['uid'];

 if (array_key_exists($uid, $this->caldavEtags) && $etag != $this-

>caldavEtags[$uid] && $etag != 400) {

 $uidsToUpdate[] = array(

 'uid' => $uid,

 'id' => $id

);

 }

 }

 }

 return $uidsToUpdate;

}

All ids of all events that need to be updated are being put in an array and returned so that the

program knows which events need to be updated. From here on, further steps can be taken

to complete the process.

Recruitment Technology Otys - Sinan Samet 33

3 Reflection

The intern task to add services to the Otys calendar was interesting and fun to do although it

did have its fair share of moments of stress. Implementing the already made service was

hard because I was not familiar with the Otys code when I came here. After getting used to it,

it got easier but still, it was one of the least fun things to do because I had to work the code of

someone else.

The part of implementing Outlook was more fun. As someone who already had knowledge of

programming, the usage of interfaces to make the application more professional, universal

and cleaner was a different and challenging thing to me. It is something I want to be a lot

better in terms of design patterns and SOLID programming. After being able to put this the

best way I knew possible it made me proud, and the next time I will be facing this challenger I

want to do it even in a better way so that every program I make will reach its maximum

performance.

Another thing I learned which was very interesting was the way calendars work. To update

an event according to the newest data without colliding to another calendar changing it at the

same time will definitely cause problems. If two calendars want to update the same data at

the same time, they need to know of each other which one is the newest. To solve this

problem, calendars use group ids which is a unique number of the update happening to the

group of data. This unique number will tell if it is the most recent version of the group of data

updated. This way it is possible to know if the calendar needs to be updated on each or one

of the sides of the service, or not. There is also a unique number for each event. Because

the service also needs to know if each event needs to be updated or not to save time. And a

third unique ID to determine if the event is colliding with another event that is at the same

time being updated in order to detect collision and perhaps ask the client which version he or

she wants to keep. This is a common problem in the world of a programmer, and I am glad to

have faced it early on. After all these kinds of problems are what makes a programmer grow.

Recruitment Technology Otys - Sinan Samet 34

4 Research topic

During the first days in Otys the environment had to be set up and the code and structure of

the software had to be learned. The project is made in AngularJS, but at a much larger scale

and much older version of AngularJS (1.3) than expected. At such a large scale of a project it

is hard to keep things organized without a proper structure.

For this project the structure is hard to maintain, mainly because AngularJS is not made for

this job. Since it is not even component based yet, it is hard to keep track of everything and

everyone does things differently which is why the same things are solved differently by

different people. For this reason, the project code is complex and fixing this will enhance the

development speed many times.

At this moment it became very clear that by upgrading the project from AngularJS to Angular

would speed up the performance of this company by a lot.

5 Research method

There are at least three ways to tackle this problem [1]. These ways are:

- Total conversion

- ng-forward

- ngUpgrade

- Ui-router Angular Hybrid

5.1 Total conversion

As explained earlier, this way of upgrading is not a realistic strategy at all for a project this

size. To do this the old project has to be converted to the new version.

So, it is not known during the conversion if everything will work with each other. The pieces

of code cannot be tested or validated. This will be depressing because things will keep

getting in the way.

However, if this was a small project, this would still be an option.

Recruitment Technology Otys - Sinan Samet 35

5.2 ng-forward

Ng-forward is a third-party library which can be written in AngularJS in Angular 2 style. This

way it can be gradually upgraded towards Angular.

However, this one also has its flaws. For example, the templates are not compatible with

Angular. So, everything needs to be adjusted to work with Angular instead. This way the

same work will be repeated twice.

Also, because it is a third-party library it is not supported and maintained by Google itself so

there is no guarantee on how long and good it will work. That is why this is not an ideal

option either.

5.3 ngUpgrade

Another method is the ngUpgrade method which is made by Google itself and fully satisfies

the needs of this project to migrate in a seamless way to Angular.

With ngUpgrade what has to be done is run both AngularJS and Angular alongside each

other. This immediately shows a downside of this solution which is that two projects are

executed at the same time instead of one.

So, the benefits of using ngUpgrade is that it can be built incrementally. That means that the

project can be kept the way it is. And upgrade (or better yet migrate) to Angular each

component one by one. So, it does not matter if it has to be completed it in a week, or a year.

The project itself will not be disturbed by this process.

Another thing is that it is created by Google. Which means it will be supported by the creators

of Angular itself, so it is safe to assume that it is dependable.

Since this is a hybrid solution which fits the company needs to migrate to the new Angular,

this will be the most dependable method to do further research on.

Also, within the ngModule migration method, there are two different commonly used methods

to approach:

- Vertical Slicing

- Horizontal Slicing

Vertical slicing is a case in which the migration starts at the top level of each module and

work it down to the lower levels. This method is recommended for larger projects, but it has a

downside. While working down the code there will most likely be duplicate code to keep the

application from breaking.

In horizontal slicing, however, it is meant to start at the lowest level of each module and work

up from there. This way there will not be any duplicate code and it will be easy to start with.

Recruitment Technology Otys - Sinan Samet 36

The downside of this method is that it is to understand the code because both versions exist

at the same time in the same module. For that reason, this method is recommended for

smaller projects, because it is harder to work this way in larger teams.

5.4 Hybrid Router

Another way to migrate as advised by Mitch Dries here at Otys is to use the ui-router angular

hybrid module. For this method it is not possible to skip the conversion to ES6 because the

module itself is written in ES6.

The way this module works is that there are two lists of routes. One for AngularJS and one

for Angular. Once a component is done being migrated. The route can be set from the

AngularJS component to the Angular component route. This will allow for an easy way to

migrate.

The conclusion to this is that for this project, it is better to use either the vertical slicing

method, or the Hybrid Router method, because the project is at a very large scale, and the

teams are as well. This way the performance will increase at a faster rate, it will be easier to

debug and there will be better motivation since it is not as depressing to work in it anymore.

Recruitment Technology Otys - Sinan Samet 37

6 Elaborating on the research

6.1 What is the AngularJS framework? [2]

As it was said by its official documentation “Angular is a structural framework for dynamic

web apps” [3]. Which means that the HTML content (templates) can be dynamically changed

using JavaScript as its model.

The most important concepts of AngularJS are:

- Views

- Scopes

- Controllers

As explained before the HTML part is the view which can be changed dynamically using the

“backend”. The backend in this case would be the scope and the controller.

The scope makes the connection between the controller and the view. Inside a controller

scopes can be defined, which will be bound to the view. An example of this is:

var newApp = angular.module('angularApp',[]);

newApp.controller('NewController', ['$scope', function($scope) {

$scope.message = ‘This is the welcome message!';

}]);

In the code above, the controller “NewController” is made in “newApp”. Inside this controller

there is a scope defined called “message” with the value “This is a welcome message!”.

So, to output this inside the view (HTML) the following can be done:

<div ng-controller="NewController">
{{ message}}
</div>

What is done here is that the controller is called which was named “NewController”. Inside

the div the scope named “message” is called. So, this will display “This is a welcome

message!” inside the div. Double curly brackets are used to let AngularJS know that the

scope data is going to be accessed.

Recruitment Technology Otys - Sinan Samet 38

A real powerful tool, for example, is the data binding. Using data binding the data in the

JavaScript part as well as the html part can be changed at the same time.

Figure 25: Data binding example

In the figure above it can be seen that in the first place (ng-app) the AngularJS application is

defined. Because of this AngularJS knows that it has to initiate itself here. The second thing

that can be seen is the “ng-model” attribute. This defines the variable “foo_name” to the

content of the input field. The last thing seen in the example is the “ng-bind” attribute. This

tells AngularJS that it requires the data inside “foo_name”. So, as soon as any change

happens inside the input field, the text between the “span” tags will change to that as well.

A feature like this makes the lives of frontend developers a lot easier. This is also how a

framework differs from a library. Because when a library is used, the code can be overseen,

and the library can be used. While when a framework is used, the framework is in charge

and it uses the code when it needs it.

So, the user calls the specific functions of a library in the code while a framework is wrapped

around the code.

AngularJS takes charge of the structure of the code and this way it keeps things more

organised. Larger projects are easier to manage because of this.

But that is not everything that AngularJS can provide for a developer. Like other frameworks

it is a higher level of abstraction which is at the cost of flexibility. So, for most web

applications such a framework will be ideal, because it has done a lot of the work that needs

to be done in any of those projects already in advance. This saves a lot of time.

However, this cost of flexibility, of course, means that it is not suited for everything. Things

that need to manipulate a large amount of times like games are not suited to be made in

such a framework. For that, a framework like Unity can be used.

Recruitment Technology Otys - Sinan Samet 39

6.2 What is Angular and how is it better? [4]

6.2.1 What is the Angular framework?

The Angular framework is a lot like AngularJS in terms of being a frontend framework.

However, Angular is structured better and has a lot more features. AngularJS is what they

call the versions of Angular until 2.0. From version 2.0 and up it is called Angular. The reason

the name was changed is, because it the code transformed when it changed to Angular. The

most obvious reason is that AngularJS uses JavaScript (hence JS) and Angular uses

Typescript. But besides this, there have been many changes in structure and feature-wise.

6.2.2 Why is it better than AngularJS?

6.2.2.1 JavaScript vs Typescript

As mentioned before, Angular uses Typescript as opposed to AngularJS which uses

JavaScript. However, this does not mean that JavaScript cannot be used in Angular instead.

It is also possible to just uses JavaScript inside Angular. A benefit of this is that it makes the

migration from AngularJS to Angular so much easier since it can be done simultaneously

because of this. But how is it possible that both can be used? Typescript exists within

JavaScript and so it is a superset of ES6 (JavaScript version 6).

6.2.2.2 Speed performance of AngularJS vs Angular

One reason to migrate towards Angular would be the speed. Once the migration is complete,

the project will be five times faster than AngularJS. This is mostly because it contains AOT,

which will be explained later.

6.2.2.3 The learning curve of AngularJS vs Angular [5]

As one of the advantages that AngularJS has is that it is much easier to learn. It is not as

complicated as Angular. AngularJS is straightforward and everything is easier to understand.

But Angular does not aim to be easy to learn. Instead it aims to be more professional, faster,

and structured. Thus, it will be more maintainable regarding large projects as opposed to

AngularJS which is a better choice for small projects.

This means that for the company Otys, it is highly recommended to start migrating to Angular

as it is a too large of a project for AngularJS.

Recruitment Technology Otys - Sinan Samet 40

6.2.2.4 The ahead of time (AOT) compiler of Angular [6]

One of the biggest advantages of Angular is that it has an ahead of time compiler. The AOT

compiler converts the HTML code and Typescript code into efficient JavaScript code in the

server. So, the client will receive the code as efficient JavaScript code which is easier and

faster to render. Also, because the HTML and CSS are combined, they do not need to be

called for separately which helps to make fewer asynchronous requests.

AOT also provides more security because the code is compiled in the server. This helps to

prevent a lot of injection attacks.

There are two different options as to compile the application with the AOT compiler. One of

which is the JIT compiler which compiles during runtime. And the other is the AOT compiler

which like explainer compiles during runtime. JIT is the default option that Angular provides

this can be changed to use AOT by enabling this option when serving the application. But it

is built in production mode, it will always use AOT.

6.2.2.5 Angular components

Like explained before in the AngularJS part, AngularJS uses scopes to send data between a

view and a controller. It also has a rootScope in which variables can be defined which have

to be used on every page. But Angular has a much better approach towards this. It uses a

hierarchy of components. A component is a directive in AngularJS with a template. This

helps the project to be a lot more organised and well structured.

6.2.2.6 Babel

This is a very important step which can cause a lot of trouble if not done right or save a lot of

time if done right. Babel allows ES6 files to be converted to ES5. This means that all new

JavaScript code is converted to old JavaScript code and so they are compatible with older

browsers and older frameworks. Since Otys is using an old version of AngularJS, this is a

step that cannot be forgotten. To use new modules written in ES6, Babel has to be

configured. Once that is done, it will be converted to the old JavaScript and it will not be

causing errors anymore.

This definition, however, is very specific to the configuration that is going to be used for Otys.

In general, it is possible to convert any version of JavaScript to be compatible with each

other as a pre-set. And Babel is many more possibilities than just this.

6.2.2.7 Webpack

Webpack is one of the few known module loaders. Using a module loader, NPM modules

can be loaded in a much easier way. They are available from everywhere instead of having

to give up the whole directory for it. It handles everything that needs to be handled within the

module.

In the case of Otys this is not the only positive thing about Webpack. Another thing is that

Otys can finally get rid of the lib and bower_components directories because they will be

obsolete.

Recruitment Technology Otys - Sinan Samet 41

6.3 Preparing the migration from AngularJS to Angular [3]

It is hard to find a decent example on how to start on doing this. However, a great example

can be found on the Angular docs itself.

A good thing to start out with after doing the preparations is to integrate Typescript since

Angular works with that.

To do this, typescript is installed with:

npm i typescript --save-dev

Next thing is to install all packages that belong to Angular with this command:

npm install @types/jasmine @types/angular @types/angular-animate

@types/angular-cookies @types/angular-mocks @types/angular-resource

@types/angular-route @types/angular-sanitize --save-dev

To configure the Typescript compiler which generates the JavaScript files a tsconfig.json file

is needed. The following configurations will be used for this project:

{

 "compilerOptions": {

 "module": "commonjs",

 "target": "es5",

 "moduleResolution": "node",

 "sourceMap": true,

 "emitDecoratorMetadata": true,

 "experimentalDecorators": true,

 "lib": ["es2015", "dom"],

 "noImplicitAny": true,

 "suppressImplicitAnyIndexErrors": true

 },

 "exclude": [

 "node_modules"

]

}

Now to run the compiler, this must be added to the package.json file

"scripts": {

 "tsc": "tsc",

 "tsc:w": "tsc -w",

And run it in the command-line with:
npm run tsc:w

As soon as this is done, the compiler will start watching and recompiling the changes that

were made. If there are no TypeScript files it will give an error about it, but since these will be

made there is no need to worry about it.

Recruitment Technology Otys - Sinan Samet 42

So, citing from Angular “Since TypeScript is a super-set of ECMAScript 2015, which in turn is
a super-set of ECMAScript 5, you can simply switch the file extensions from .js to .ts and
everything will work just like it did before.” This sounds to be too good to be true. And it is.
The first problem faced during this process is the module loader. Otys is using RequireJS as
their module loader. The problem with this is that it is based on AMD and not ES6.

AMD is a module definer which uses the old JavaScript however, TypeScript uses ES6
which is the newer JavaScript. To convert every file to TypeScript, all AMD files need to be
converted to ES6.

The best way to tackle this problem is the opposite of what most would think. Using a
JavaScript compiler, all JavaScript files need to be converted to the old JavaScript.
Compared to upgrading all to the new JavaScript, this gives the advantage of all browsers
being able to support the JavaScript files.

Babel is the JavaScript compiler that can do this for us. If set up right, it will compile all code
to the old JavaScript before running it. That is how the newer and older versions of
JavaScript will be able to work alongside each other.

There is also another problem that will make things a lot easier if solved. Otys is still using
Bower. Bower is an outdated package manager and for that reason it is smart to upgrade to
NPM instead.

An amazing feature which enhances NPM is Webpack. This is a great reason to upgrade to
NPM instead of Bower. Using Webpack packages can be easily imported without being
dependent of the path of the packages. Webpack will handle everything very conveniently.

So, to upgrade to NPM and use Babel the best approach would be to first configure
Webpack. To do this a couple packages need to be installed in node, or in the case of Otys,
using Yarn because Otys already changed to Yarn which is the same but a lot of times it
causes fewer problems. The following packages are needed:

- Webpack
- Webpack-dev-server
- Webpack-cli

To install these using yarn the following command can be used:

yarn add webpack webpack-dev-server webpack-cli

Now yarn will add all three packages that needs to be configured in Webpack. After doing
that, a file named “webpack.config.js” has to be made. This configuration file will be executed
whenever Webpack ran. The file needs to be created at the root of the project. So, for Otys
this would be in the folder “go”. To define the configurations, JSON needs to be used. So,
everything will go in a JSON array. The JSON array needs to be given to “module.exports”.
So that would mean “module.exports = (JSON Configuration array)”.

Recruitment Technology Otys - Sinan Samet 43

The first thing that needs to be done in the configuration file is to point the entry file. The

entry file is the file that contains the JavaScript going to the source code. In the case of Otys,

this file is located in “go/app/js/app/main.js”. To point to that entry file, the property “entry” will

be given the path like so:

module.exports = {

 entry: ‘./app/js/app/main.js’;

}

Now the entry file is known. It is possible to convert this file, and all the files that are being

used within to the output file that it is configured to be. To do this, the output file has to be set

as well. However, since paths are not always the same on every system. It is wise to use the

“path” module. This module will make paths safer. To implement this path, add it using “yarn

add path”. Then to put the output file and implement the “path” module the following has to

be added to the configuration:

const path = require("path");

module.exports = {

 entry: ‘./app/js/app/main.js’;

 output: {

 path: path.resolve(__dirname, 'app/build'),

 filename: '[name].js'

 }

}

This means that the output file will be written to the location “go/app/build” and the name of
the file will be equal to the name of the entry file using “[name]”.

The next step is to configure the rules. Within these rules, babel has to be loaded and used.
But also, the “node_modules” folder needs to be excluded. The reason for excluding this
folder is because Webpack should not compile that folder, because it does not need it. That
folder is already being used by Webpack on its own way without converting it. It is, however,
possible to convert it. But it will drastically lower the performance.

Recruitment Technology Otys - Sinan Samet 44

So, the final configuration file for Otys will be:

const path = require("path");

module.exports = {

 entry: ‘./app/js/app/main.js’;

 output: {

 path: path.resolve(__dirname, 'app/build'),

 filename: '[name].js'

 },

 module: {

 rules: [{

 exclude: [/node_modules/],

 loader: 'babel-loader',

 query: {

 presets: ['@babel/env']

 }

 }]

 }

};

So, in the loader, Webpack will now load Babel and know how to use it. In the query attribute
the preset needs to be defined. The preset is defined as “@babel/env”. This tells Webpack
that Babel needs to compile the JavaScript files to a version that is compatible for all
versions.

Before being able to proceed from this step, the Babel packages need to be installed. The
following packages are needed for that.

- @babel/core
- @babel/preset-env
- babel-loader

We do the same to do this with the yarn command:

yarn add @babel/code @babel/preset-env babel-loader

After this is done, a change in package.json needs to be made. In the “scripts” attribute, a

script needs to be added that will run webpack and compile the file that is needed. All that

needs to be added is the following line.

build-webpack: “webpack”

Now in the command line the following has to be executed:

yarn run build-webpack

The webpack command will be executed, and the file will be compiled into the path specified.

Recruitment Technology Otys - Sinan Samet 45

Next step is to direct the project to the compiled output file rather than the entry file. This is
mainly done in the main HTML file. However, for Otys this step is different. The main html file
is actually multiple files which is index.html and modular.html. But index.html will not be used
anymore so, it was advised to implement this on modular.html instead. Modular.html loads
RequireJS as multiple scripts, but not the main entry file. The main entry file is configured
within the configuration file of RequireJS which is located in “go/app/js/require/config.js”.
Within this file there is a packages attribute. The first package to be loaded is the main.js file.
It has to be directed to the output file, instead of the entry file. So, this has to be changed:

packages: [{

 name: 'app',

 location: 'js/app'

 }

To this:

packages: [{

 name: 'app',

 location: 'build'

 }

It will automatically select the “main.js” file unless specified differently.

Now at this point a problem exists. In the website console the following error will occur:

Figure 26: Error because define is used in a wrong way

After doing a lot of research and asking around on Stackoverflow [7], it was possible to

conclude that this error is caused by a module that is not compatible to be compiled. To be

able to find out by which error the problem is caused, the “noParse” attribute has to be used

in the Webpack configuration file.

module: {

 noParse: /node_modules/

 }

The code above shows how to let Webpack not parse node modules. Instead of the whole

node modules directory, each module has to be selected separately to be able to find out

which module is causing this problem. Since this will take a lot of time, it will not be possible

to fix this problem at the moment.

Recruitment Technology Otys - Sinan Samet 46

The compiled file contains this piece of code:

Figure 27: Compiled JavaScript code

When the code is compared to the entry file code which is written in AMD:

Figure 28: Code to the entry file

It can be seen that it is written in a much different way.

Recruitment Technology Otys - Sinan Samet 47

There is a reason as to why they are so different from each other. The first reason is that
after compiling, the code is minimized to make the code as efficient as possible with the least
amount of code and procedures. This is a good thing and that is why the understandable
variable names are changed to a, b, c and so forth.

After solving this problem, it is possible to get rid of Bower components and the whole project
will already be at a higher level, because all packages will be easily accessible. That will
save a lot of code and make it possible to convert all files from AMD to ES6.

The conversion can be done with tools like the one mentioned before at:
https://www.npmjs.com/package/amd-to-es6 [8]. But there are files that this script is not
compatible with. That is why some files need to be configured manually which is fairly easy
to do.

Figure 29: Example AMD code

The piece of code above is an example of AMD. It does not matter how small or how big the
code is. All that has to be changed is the define function. The packages that are imported in
the define function, are now being imported with the “import” function instead.

https://www.npmjs.com/package/amd-to-es6

Recruitment Technology Otys - Sinan Samet 48

Here is an example of the code converted to ES6.

Figure 30: Example ES6 code

It can be seen in the figure above that the code looks much cleaner and shorter in ES6. But
that is not the only advantage. It is also possible to see that the editor gives a warning when
a package is not available. It will also give the opportunity to solve it by itself by installing the
module. Another great benefit of it is that the packages that are not being used, will be
grayed out. This way it is easier to know which packages are just a waste of processing time.
It is also a good idea to convert all bower components to node modules. The package
“require” is being extracted from the “lib” directory. By adding requirejs to NPM it is possible
to just say “import require from ‘requirejs’” instead. This way the package will be loaded from
NPM and is much safer. Otys currently relies on the location of the packages. And since the
root of Otys is not available to access on the website, it cannot use packages from the root
folder. But since Webpack will compile all of that already if it is configured right, there is no
need to worry about it.

A last thing that should be mentioned is the export default part. This has to be done in order
to export the code and be recognized by the project.

And that is it. That is all it takes to convert a file from AMD to ES6. However, since Otys is
such a large application and have hundreds of files, it will not be easy to do this for all files
manually. That is why using a script to do the most automatically is recommended.

After having everything converted to ES6. It is now possible to just change the extension of
all files to “.ts” from “.js”. Since this alone brings also a lot of benefits with it along with the
changes done before, it will have a big impact on the application in terms of performance,
safety, and readability. Which means fewer errors, and faster productivity.

Recruitment Technology Otys - Sinan Samet 49

After having done the conversion to TypeScript, it is now possible to use the “Angular Hybrid”
module. To do this, all that has to be done is [9]:

yarn add @uirouter/angular-hybrid @angular/common @angular/compiler

@angular/core @angular/platform-browser @angular/platform-browser-dynamic

@angular/upgrade

Now along with the uirouter module, Angular is also installed. After this step, the “<ng-app>”
attribute needs to be removed from everywhere. This is because it will be done in JavaScript
from now on. Then, in “go/app/js/app/ui-router.js”, “ui.router.upgrade” has to be added like
so:

define(['lib/angular', 'lib/lodash', 'lib/angular-ui-router'], function

(angular, _) {

 var modalUrlMatcherList = [];

 return angular.module('app/ui-router', ['ui.router',

‘ui.router.upgrade’])

 .factory('stateChangePromise', ['$rootScope', '$q',

function($rootScope, $q) {

 return function() {

 return $q(function(resolve, reject) {

 var _offSuccess = $rootScope.$on('$stateChangeSuccess',

function(e) {

 _offSuccess();

 _offCancel();

 _offError();

 resolve(e);

In the example above it can be seen that the ui.router.upgrade package is added to

angular.module.

Recruitment Technology Otys - Sinan Samet 50

After that. The file NgModule has to be made in the “app” folder. This is the first file that
belongs to Angular and not AngularJS. Inside this file AngularJS needs to be connected to
Angular.

Then, the modules BrowserModule, UpgradeModule and UIRouterUpgradeModule.forRoot()
need to be imported within the file.

All providers can be created within the “providers” attribute.

The ngDoBootstrap function is the part that combines AngularJS with Angular.

@NgModule({

 imports: [

 BrowserModule,

 // Provide angular upgrade capabilities

 UpgradeModule,

 // Provides the @uirouter/angular directives and registers

 // the future state for the lazy loaded contacts module

 UIRouterUpgradeModule.forRoot({ states: [contactsFutureState] }),

],

 providers: [

]

})

export class SampleAppModuleAngular {

 constructor(private upgrade: UpgradeModule) { }

 ngDoBootstrap() {

 this.upgrade.bootstrap(document.body,

[sampleAppModuleAngularJS.name], { strictDi: true });

 }

}

Within “go/app/js/app/main.js”, UI-Router needs to be told that it should wait until all
bootstrapping is done before synchronizing the URLs. To do that, this line has to be added:

ngmodule.config(['$urlServiceProvider', ($urlService: UrlService) =>

$urlService.deferIntercept()]);

After that the application has to be told how it should be bootstrapped by adding:

platformBrowserDynamic()

 .bootstrapModule(AppModule)

 .then(platformRef => {

 // Intialize the Angular Module

 // get() the UIRouter instance from DI to initialize the router

 const urlService: UrlService =

platformRef.injector.get(UIRouter).urlService;

 // Instruct UIRouter to listen to URL changes

 function startUIRouter() {

 urlService.listen();

 urlService.sync();

 }

 platformRef.injector.get < NgZone > NgZone.run(startUIRouter);

 });

Recruitment Technology Otys - Sinan Samet 51

It is now possible to route the AngularJS routes like it was already done for each component
in Otys. But as it can be seen below, Angular components are registered with the
“component” attribute instead of “templateUrl” and “controller”.

var foo = {

 name: 'foo',

 url: '/foo',

 component: 'fooComponent'

};

$stateProvider.state(foo);

var bar = {

 name: 'foo.bar',

 url: '/bar',

 templateUrl: '/bar.html',

 controller: 'BarController'

};

$stateProvider.state(bar);

From this point on, it is just a matter of making the Angular side of each component, where
after the route has to be redirected to the Angular route like shown above.

Recruitment Technology Otys - Sinan Samet 52

6.4 Conclusion

Even though the research did not reach the last part, it is definitely possible to upgrade to

Angular. However, it will be a very long process. First of all, once the migration process

finished, every component from then on has to be made in the new Angular. Since there are

many developers, it will not be too easy to keep control of this. Another hardship will be the

components that need to be migrated to the new Angular. It seems the best way would be to

put a developer to migrate component by component. While this component is being

migrated, other developers should not work on the same component while the migration is in

process. Once it is done, the bug fixes and new features need to be made in the Angular part

and not in the AngularJS part. This will not be a problem, because once the component has

been migrated, the AngularJS version will no more respond. The process of migration will

take a lot of time, but it will not slow down the development process of the overall application.

The easy and also very beneficial part of this project to migrate to Angular is the first steps.

The steps of converting everything to Typescript. Unfortunately, because there is an error

that needs to be fixed, it was not yet possible to make use of these advantages. But if it is

fixed, the project will already have a lot of benefits like being able to import packages in a

very easy and secure way. The way that packages are currently handled are time consuming

and missing out on the benefits of the new JavaScript ES6. Webpack and Babel are already

configured but it seems Babel is not configured the right way yet. After the error has been

solved, every file can be converted to ES6 and to the extension “.ts” making it TypeScript.

It is not a hard process to fix the bug with the broken node module. The problem is that there

is currently not enough time. Spending some time on this problem will allow it to be easily

fixed.

Recruitment Technology Otys - Sinan Samet 53

References

[1] Rangle.io, “Tutorial: How to Start Using Angular 2 with Your Angular 1.X Code Base,”

[Online]. Available: https://www.youtube.com/watch?v=ucUy0CoN57Q&t=1466s.

[2] Angular, “What Is AngularJS?,” Google, [Online]. Available:

https://docs.angularjs.org/guide/introduction.

[3] Angular, “PhoneCat Upgrade Tutorial,” Google, [Online]. Available:

https://angular.io/guide/upgrade#phonecat-upgrade-tutorial.

[4] B. Hartmann, “Taking the leap to go from AngularJS to Angular,” UruIT, [Online].

Available: https://www.uruit.com/blog/angular-1-vs-2-migrate/.

[5] J. Bandi, “Angular 2 vs. AngularJS: A teacher’s perspective,” Medium, [Online].

Available: https://medium.jonasbandi.net/angular-2-vs-angularjs-a-teachers-perspective-

d7e10ba29ede.

[6] Angular, “The Ahead-of-Time (AOT) compiler,” Google, [Online]. Available:

https://angular.io/guide/aot-compiler.

[7] S. Samet, “Stackoverflow,” [Online]. Available:

https://stackoverflow.com/questions/56060050/getting-define-cannot-be-used-indirect-

error-when-bundling-with-webpack.

[8] jonbretman, “AMD to ES6 module transpiler,” NPMJS, [Online]. Available:

https://www.npmjs.com/package/amd-to-es6.

[9] UI-Router, “UI-Router angular-hybrid,” [Online]. Available: https://github.com/ui-

router/angular-hybrid.

