
Bachelor paper Academic year 2018-2019

Professional Bachelor Applied
Information Technology

Responding to support tickets in an

unfamiliar language

Jonathan Lauwers

Promoters:

Mitch Dries Otys Prague
Johan Cleuren PXL University of Applied Sciences

and Arts Hasselt

Bachelor paper Academic year 2018-2019

Professional Bachelor Applied
Information Technology

Responding to support tickets in an

unfamiliar language

Jonathan Lauwers

Promoters:

Mitch Dries

Otys Prague

Johan Cleuren

PXL University of Applied Sciences
and Arts Hasselt

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 ii

Acknowledgements

After an unforgettable three years of studying at PXL University College, I am very proud to present

my thesis. During these three years I have learned and experienced more than I could have ever

imagined. From programming in Assembly to doing my internship in Prague. All of these experiences

could not have been possible without the help from certain people of which I would like to thank a

few.

First and foremost, I would like to thank Otys for a very enjoyable internship at their office in Prague.

I learned a lot of new topics and met some very nice people along the way. Specifically, I would like

to thank Mr Mitch Dries, for being my internship promoter and helping me whenever I had a

question. I would also like to thank Mr Jirka Bruijn for making this internship at Otys possible.

Next, I would like to thank my school promoter, Mr Johan Cleuren, for guiding and helping me when

needed and providing valuable feedback on my thesis topic and research.

I would also like to thank Mr Johan Cleuren one more time, as well as Ms Marijke Sporen, for

allowing me to study and do my internship abroad. Both experiences resulted in memories I will

never forget. It would not have been possible without your help.

Lastly, I would like to thank my family, friends and girlfriend for the continuous support and guidance

throughout this journey.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 iii

Abstract

Otys, being a major recruiting software company, encounters a wide variety of nationalities. This

comes with certain obstacles, such as different customers speaking different languages which not

everyone understands. Thinking about how to overcome this obstacle, Otys thought of a solution

featuring Google’s Cloud Translation API.

Otys has the option to send support tickets, which can be done by any customer at any time. This is

where the Google Translate functionality comes into play. Once a support ticket has been sent, that

support ticket now has the option to be translated automatically. This functionality can be used by

clicking the Google Translate button at the top right corner of the support ticket. Clicking this button

detects the language of the ticket, retrieves your current profile language and translates the ticket to

your current profile language.

This whole process is realized with the use of Elasticsearch, a RESTful search and analytics engine to

store and retrieve data in an efficient and expandable way, and Google’s Cloud Translation API, a

language detection and translation API which supports over 100 different languages. When the

button is pressed, a call to the Elasticsearch storage is made, checking if the translation has already

been made. If so, that translation is taken and presented to the user. If not, the translate API is called

to translate the text, the translation is stored in the Elastic Search storage and is then presented to

the user.

If users reply to the ticket after having the Google Translate feature enabled, they are able to do so in

their own preferred language as the reply is automatically translated to the original ticket’s language

once it is sent.

Currently, the language detection and translation section of this thesis are performed by using

Google’s Cloud Translation API. However, is this the best option for Otys? To answer this question,

the research topic focuses on the alternatives of Google’s Cloud Translation API. The research will

cover the speed, accuracy and price of every alternative with a critical comparison in the end. Using

this gathered information will reveal which alternative suits Otys best.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 iv

Table of contents

Acknowledgements ..ii

Abstract ... iii

Table of contents ... iv

List of figures .. vii

List of tables .. viii

List of abbreviations ... x

Introduction ... 1

I. Traineeship report ... 2

1 About the company ... 2

2 Introduction internship subject ... 3

2.1 Responding to support tickets in an unfamiliar language ... 3

2.2 What must be implemented ... 3

2.2.1 Settings .. 3

2.2.2 Elasticsearch .. 4

2.2.3 Database table ... 4

2.2.4 Google’s Cloud Translation API ... 4

3 Start internship subject ... 5

3.1 The database ... 5

3.2 Elasticsearch index .. 6

3.2.1 Installing Elasticsearch ... 6

3.2.2 Creating an index ... 7

3.2.3 Searching the index ... 8

3.3 Settings .. 9

3.3.1 Creating the setting ... 9

3.3.2 Linking the setting ... 10

3.4 Google’s Cloud Translation API ... 11

3.4.1 Integration ... 11

3.4.2 Usage ... 11

3.5 The translate button .. 12

3.5.1 layout changes ... 12

3.5.2 Support controller ... 13

3.6 The GoogleTranslateService .. 14

3.6.1 getModel ... 14

3.6.2 translateOnPageLoad .. 14

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 v

3.6.3 translateTicket ... 14

3.6.4 saveOriginalTicket ... 15

3.6.5 Model calls ... 16

3.7 The GoogleTranslateModel ... 17

3.7.1 translateOnPageLoad .. 17

3.7.2 translateOnButtonPress .. 18

3.7.3 translateSourceTextToProfileLanguage .. 19

3.8 The test process... 19

3.9 Code review feedback ... 20

4 Reflection... 22

II. Research topic ... 23

1 Research question ... 23

2 Research method .. 23

2.1 Approach ... 23

2.2 Analysis .. 23

2.3 Comparison ... 23

3 Research .. 24

3.1 Language Detection [1] ... 24

3.1.1 What is Language Detection .. 24

3.1.2 How Language Detection works .. 24

3.1.3 Where Language Detection is used ... 25

3.1.4 How Language Detection is checked ... 25

3.1.5 What are the options .. 26

3.1.5.1 Language Detection API [2] ... 26

3.1.5.2 Patrick Schur’s language detection package [3] .. 29

3.1.5.3 Landrok’s language detector [5] .. 32

3.1.5.4 Cloud Translation API .. 35

3.1.5.5 Pear’s language detection package [9] ... 38

3.1.6 Comparison ... 40

3.1.7 Conclusion ... 41

3.2 Text Translation ... 42

3.2.1 What is Text Translation [11] .. 42

3.2.2 Approaches [11] .. 42

3.2.3 How Text Translation is checked ... 42

3.2.4 Used text ... 43

Kid’s tale .. 43

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 vi

Fictional article .. 44

Scientific article ... 45

3.2.5 What are the options .. 46

3.1.5.4 Cloud Translation API .. 46

3.1.5.4 Microsoft’s Translator Text API ... 48

3.1.5.4 Yandex Translate API ... 51

3.2.6 Comparison ... 53

3.2.7 Conclusion ... 54

4 Conclusion ... 55

5 Bibliography ... 1

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 vii

List of figures

Figure 1: Otys Ruksak page 5

Figure 2: Query to create the support ticket’s database 6

Figure 3: Require needed for Elasticsearch 6

Figure 4: Elasticsearch composer install 6

Figure 5: Elasticsearch client instantiate function 7

Figure 6: Elasticsearch ‘create function’ 7

Figure 7: Body of the Elasticsearch index 8

Figure 8: Elasticsearch ‘search function’ 8

Figure 9: ‘settings_props’ examples of translate settings 9

Figure 10: CmsLanguages class 9

Figure 11: settings_categories table Google Translate and Basic Settings row 10

Figure 12: settings_props_categories linking of settings 10

Figure 13: Google Translate settings 10

Figure 14: Composer install required to use Google’s Cloud Translation API in PHP 11

Figure 15: Function to instantiate Google’s Cloud Translation API 11

Figure 16: Support ticket with Google Translate button 12

Figure 17: Translated support ticket with Google Translate button 12

Figure 18: Detail view of a translated support ticket 12

Figure 19: ‘Translate function’ 13

Figure 20: ‘TranslateOnPageLoad function’ 13

Figure 21: Detailed view ‘SaveOriginalTicket function’ 13

Figure 22: ‘getModel function’ inside the ‘GoogleTranslateService’ 14

Figure 23: ‘translateOnPageLoad function’ inside the ‘GoogleTranslateService’ 14

Figure 24: ‘translateTicket function’ inside the GoogleTranslateService 15

Figure 25: ‘saveOriginalTicket function’ inside the GoogleTranslateService 15

Figure 26: Example functions of separate model function calls 16

Figure 27: ‘translateOnPageLoad function’ 17

Figure 28: Code snippet of the translateOnButtonPress function 18

Figure 29: Code snippet of the ‘translateSourceTextToProfileLanguage function’ 19

Figure 30: Defining of global constants. 20

Figure 31: Usage of the OFF constant 20

Figure 32: Storing of a new translation in the Elasticsearch index 20

Figure 33: Global value 'translations' 21

Figure 34: Using of the injected 'translations' singleton 21

Figure 35: Usage of the ‘otysEntities class’ 21

Figure 36: Example of different N-grams [1] 24

Figure 37: Example of PHP code using the Language Detection API 26

Figure 38. Example of PHP code using Patrick Schur’s language detection package 29

Figure 39: Example of PHP code using Landrok’s language detector library 32

Figure 40: Example of PHP code using the Cloud Translation API 35

Figure 41: Example of PHP code using the Pear Language Detection library 38

Figure 42: Example of PHP code using the Cloud Translation API to translate an array of text 46

Figure 43: Example of PHP code using Micosoft’s Translation Text API to translate an array of text 48

Figure 44: Example of PHP code using Yandex’s Translate API to translate an array of text 51

file:///C:/Users/11600378/Documents/3TIN/Eindwerk/Definitief/Lauwers_Jonathan_pba_IT_English_definitief.docx%23_Toc11609780
file:///C:/Users/11600378/Documents/3TIN/Eindwerk/Definitief/Lauwers_Jonathan_pba_IT_English_definitief.docx%23_Toc11609783
file:///C:/Users/11600378/Documents/3TIN/Eindwerk/Definitief/Lauwers_Jonathan_pba_IT_English_definitief.docx%23_Toc11609792
file:///C:/Users/11600378/Documents/3TIN/Eindwerk/Definitief/Lauwers_Jonathan_pba_IT_English_definitief.docx%23_Toc11609799
file:///C:/Users/11600378/Documents/3TIN/Eindwerk/Definitief/Lauwers_Jonathan_pba_IT_English_definitief.docx%23_Toc11609803
file:///C:/Users/11600378/Documents/3TIN/Eindwerk/Definitief/Lauwers_Jonathan_pba_IT_English_definitief.docx%23_Toc11609806
file:///C:/Users/11600378/Documents/3TIN/Eindwerk/Definitief/Lauwers_Jonathan_pba_IT_English_definitief.docx%23_Toc11609810
file:///C:/Users/11600378/Documents/3TIN/Eindwerk/Definitief/Lauwers_Jonathan_pba_IT_English_definitief.docx%23_Toc11609814

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 viii

List of tables

Table 1: English text language detection with the Language Detection API ... 27

Table 2: Dutch text language detection with the Language Detection API .. 27

Table 3: French text language detection with the Language Detection API ... 27

Table 4: Spanish text language detection with the Language Detection API .. 27

Table 5: Average results of the Language Detection API .. 28

Table 6: Pricing of the Language Detection API .. 28

Table 7: English text language detection with Patrick Schur's language detection package 30

Table 8: Dutch text language detection with Patrick Schur's language detection package.................. 30

Table 9: French text language detection with Patrick Schur's language detection package 30

Table 10: Spanish text language detection with Patrick Schur's language detection package 30

Table 11: Average results of Patrick Schur’s language detection package ... 31

Table 12: Pricing of Patrick Schur's language detection package ... 31

Table 13: English text language detection with Landrok's language detector 33

Table 14: Dutch text language detection with Landrok's language detector 33

Table 15: French text language detection with Landrok's language detector 33

Table 16: Spanish text language detection with Landrok's language detector 33

Table 17: Average results of Landrok's language detector ... 34

Table 18: Pricing of Landrok's language detector ... 34

Table 19: English text language detection with the Cloud Translation API .. 36

Table 20: Dutch text language detection with the Cloud Translation API .. 36

Table 21: French text language detection with the Cloud Translation API ... 36

Table 22: Spanish text language detection with the Cloud Translation API ... 36

Table 23: Average results of the Cloud Translation API .. 37

Table 24: Pricing of the Cloud Translation API .. 37

Table 25: English text language detection with Pear's language detection package............................ 39

Table 26: Dutch text language detection with Pear's language detection package 39

Table 27: French text language detection with Pear's language detection package 39

Table 28: Spanish text language detection with Pear's language detection package 39

Table 29: Average results of Pear's Language Detection package .. 40

Table 30: Pricing of Pear's Language Detection package .. 40

Table 31: Comparison of the different language detection options ... 40

Table 32: Dutch to English text translation results of the Cloud Translation API 47

Table 33: French to English text translation results of the Cloud Translation API 47

Table 34: Czech to English text translation results of the Cloud Translation API 47

Table 35: Average text translation results of the Cloud Translation API .. 47

Table 36: Text translation pricing of the Cloud Translation API .. 47

Table 37: Dutch to English text translation results of Microsoft's Translator Text API 49

Table 38: French to English text translation results of Microsoft's Translator Text API 49

Table 39: Czech to English text translation results of Microsoft's Translator Text API 49

Table 40: Average text translation results of Microsoft's Translator Text API...................................... 49

Table 41: Text translation pricing of Microsoft's Translator Text API ... 49

Table 42: Dutch to English text translation results of Yandex's Translate API 52

Table 43: French to English text translation results of Yandex's Translate API 52

Table 44: Czech to English text translation results of Yandex's Translate API 52

Table 45: Average text translation results of Yandex's Translate API ... 52

Table 46: Text translation pricing of Yandex's Translate API .. 52

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 ix

Table 47: Comparison of the text translation options .. 53

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 x

List of abbreviations

API: Application programming interface

Index: Comparable to a database in a relational database. It has mapping which defines multiple

types.

CMS: Content Management System

RbMT: Rule-based machine translation

SMT: Statistical machine translation

NMT: Neural machine translation

MT: Machine translation

AI: artificial intelligence

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 1

Introduction

Nowadays, people are more connected than ever. With everyone being connected to each other, it is

no surprise that people get into contact with people from all over the world. Social media is a perfect

example of this, as people can use it to connect and communicate with people from all over the

world with a simple publish of a social media post.

This is not only the case for people, but also for companies. With the possibility of communicating

worldwide with software like Slack and Skype, companies can now have customers from all over the

world and communicate with them as if they were in the same room. Keeping this in mind, this

obviously brings some challenges with it.

One of the challenges communicating with people from all over the world is language. This challenge

is no surprise, as not everyone speaks the same language. Even with English being so widely

promoted, it is not understood or used by everyone in a multinational company environment.

Therefore, companies like Google created Google Translate to remove this language barrier between

different speaking people.

One of the companies that faces this language barrier problem is Otys. This is because Otys has a

wide variety of clients who all have the possibility to send support tickets. These support tickets are

often written in the customer’s native language, meaning that not all developers can understand

what is written in the support ticket and must use external services like Google Translate to figure

out what the support ticket is about.

In this thesis, the possibilities of solving and/or simplifying this whole process are investigated. How

it can be done and what is required to solve this language barrier in the most elegant way, are the

main problems that are discussed. Besides this, there is research provided regarding the competitors

of Google’s Cloud Translation API and if Google’s API is actually the best choice for Otys.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 2

I. Traineeship report

1 About the company

Otys is an international company, specialised in the creation of recruitment software. They have over

15 years of experience with over 1200 clients and offices located in The Netherlands, France, Belgium

and Czech Republic, resulting in a service that is available worldwide.

Otys has one main application, “Go!”, which is created to simplify the client’s recruitment work. The

application gives the client the option to post their own job applications to their own website or

multipost in just a few clicks and has a semantic search and match feature to easily link multiple

candidates to a job application based on the client’s criteria. The application is web based, meaning

that it requires no download and is mobile and tablet friendly.

Besides Otys’s main application, they also create custom websites for clients and have created over

1000 job application and company websites.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 3

2 Introduction internship subject

2.1 Responding to support tickets in an unfamiliar language

Otys, being an international company, faces a wide variety of nationalities on a daily basis. This

comes with the obstacle of people being unable to communicate with each other because they speak

different languages. To solve this problem, Otys thought of implementing Google’s Cloud Translation

API.

The first situation in which the translate feature is implemented is the support feature. The reason

why Otys chose the support feature is because this is where many clients send their questions and/or

bugs, which are often written in the native language of the client. This results in the developers from

Otys not always being able to understand what the ticket is about. This makes the support feature a

perfect place to implement the translate feature which translates the support tickets to the user’s

current profile language.

2.2 What must be implemented

2.2.1 Settings

To create a very customisable and user-friendly experience, there are four different settings related

to the translate feature.

The first setting is a setting to enable the translate feature in general. When this feature is disabled,

the translate button will not work and return a message telling the user the translate feature is

disabled. When this feature is enabled, the user has the possibility to translate the currently selected

support ticket to their own profile language by clicking the Google Translate button.

Secondly, there is a setting to enable the automatic translating of the support ticket. This means that

when a support ticket is loaded while the automatic translating setting is enabled, the ticket is

automatically translated to the profile language of the user. To use the automatic translating feature,

the general translate setting must also be enabled.

Thirdly, there is a setting to enable the saving of answers in the original language of the ticket. With

this feature enabled, the user can reply to any ticket in their preferred language. Their answer is then

automatically translated to the original language of the ticket. This means that if a ticket is written in

French and the user replies in Dutch, the answer is automatically translated and saved to French. To

use this feature, the general translate setting must also be enabled.

Lastly, there is a setting to exclude certain languages from being translated to provide the option of

not automatically translating certain languages. Before every translation, the exclude languages

setting is checked and compared to the language the ticket must be translated to. If for example, the

user selects English to be excluded, no English ticket is translated to the profile language of the user.

To use this feature, the general and automatic translate setting must be enabled.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 4

2.2.2 Elasticsearch

Elasticsearch is a RESTful search and analytics engine capable of storing high amounts of data. The

reason Elasticsearch is used, is to store translations and avoid unnecessary translations with Google’s

Cloud Translation API. This is to reduce the cost of using Google’s API, as they work with an amount-

of-character-based payment system. So instead of using Google’s API every time a support ticket is

translated, the translation is searched in the Elasticsearch index. If the translation is not found, the

message is translated using Google’s API and is then stored in the Elasticsearch index in case the

translation is requested in the future.

2.2.3 Database table

To create a more customisable automatic translate feature, there is a database to hold the ‘mode’ of

certain tickets. This mode is only relevant when the automatic translate setting is enabled as this

mode allows the automatic translate feature to be disabled for the currently selected support ticket.

When the translate button is pressed for the first time, with the automatic translate setting enabled,

a row in the ‘gt_translate_mode’ table is created with a variety of data relevant to the ticket, but

most importantly, with the mode set to “OFF”. This means that the automatic translate feature of

the currently selected support ticket is disabled and returns the original support ticket instead of the

automatic translated ticket. Pressing this button again switches the mode to ON, which re-enable

automatic translating of that support ticket and displays the translated ticket.

2.2.4 Google’s Cloud Translation API

To translate the support tickets, a service for language detecting and text translating is needed.

When it comes to text translations, Google’s Cloud Translation API is the most known API service due

to its popular and worldwide use. Therefore, Otys proposed to use this API. It provides both needed

services, language detection and text translation, in one.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 5

3 Start internship subject

3.1 The database

Otys has a bit less than thirty different databases with a lot of valuable information. To insert,

manipulate or delete an entry in one of the tables, Navicat is used. The reason Navicat is used, is

because it provides a clear view of all the data inside the selected database.

However, to ensure no major mistakes are made when manipulating a database or table, Otys uses a

migrating service called Otys Ruksak. This is a migrating service made for Otys to ensure every SQL

query made to the databases is done safely and correctly.

A benefit of Otys Ruksak is that it enables version control, as the queries performed are only applied

to certain databases while other databases are left untouched, enabling the untouched databases to

be used in case a backup is needed.

Figure 1: Otys Ruksak page

When a database has be to created, altered or removed, it is possible to do so by creating a new

migration. This migration holds four different functions, ‘getLoadEstimateUp’,

‘getLoadEstimateDown’, ‘up’ and ‘down’.

The first function is the ‘getLoadEstimateUp function’. This function requires a value from one to ten,

and bases the server intensity on the value provided. If a low value is given, it informs the server a

simple query is provided. The server then executes the query at a lower intensity. If a high value is

given, this informs the server a very complex and heavy query is provided. The server then schedules

the query later in the day. This is to avoid interference with other databases as a high intensity query

might result in the temporary melting of the servers which could make some data temporarily

unavailable. However, this function is usually not used.

The second function is the ‘up function’. This is where developers can write queries by providing a

database and a query. The provided query has to be an SQL query in order to be executed. When the

migration is executed and the query contains a wrong syntax, Otys Ruksak detects this and prevents

the query from being executed.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 6

Next, is the ‘getLoadEstimateDown and down function’. These functions are the exact opposite of

the previous two, and are called when the migration has to be reverted. However, developers usually

do not provide much attention to these functions as the migration is supposed to be permanent and

should not be undone. However, even without a proper ‘getLoadEstimateDown and down function’,

the reverting of the migration can still be done easily because of Otys Ruksak’s version control.

To create the table that was required for the support ticket’s translate feature, a simple create table

function is executed with the data fields required.

Figure 2: Query to create the support ticket’s database

3.2 Elasticsearch index

3.2.1 Installing Elasticsearch

To get started, Elasticsearch is installed in the project. To do this, a require is added to the

‘composer.json’ file.

Figure 3: Require needed for Elasticsearch

Next, the client is installed with composer.

Figure 4: Elasticsearch composer install

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 7

3.2.2 Creating an index

With Elasticsearch installed, an index can be created very easily.

Figure 5: Elasticsearch client instantiate function

First, a client is created with the ‘ClientBuilder’s create function’. This function creates and returns a

new instance of the ‘ClientBuilder class’.

Next, the host is set. This can be done by providing one or more IP addresses to the Elasticsearch

cluster, which is then used by the client. These IP addresses are purchased from Elasticsearch and are

in this case provided by Otys.

With the hosts provided, the ‘setSelector function’ is called, which chooses one of the provided hosts

randomly. This is provided by Otys as Otys has multiple IP addresses available and uses the random

selector to distribute the data evenly.

Lastly, with all this data set, the build function is called which builds the Elasticsearch client.

Now that the client is instantiated, the index can be created. This is done by creating an array with

four values:

- index

- type

- id (optional)

- body

Figure 6: Elasticsearch ‘create function’

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 8

The value provided to ‘index’ is the name of the created index. In this case, the static name

‘google_translate’.

The ‘type’ value receives the static value of ‘translations’, as translations are what is stored into the

created index.

‘id’ is an optional value. If no ID is provided, an automatically generated ID is created and given to the

created index. If a custom ID is provided, this ID is used. This ID is later used to retrieve data.

Lastly, the ‘body’ value, which stands for ‘document body’, is an associative array with key value pairs

corresponding to the data in the document. This is where an array of translation data is inserted,

which is later used to search for already made translations.

Figure 7: Body of the Elasticsearch index

With the creation of this index, storing and searching of data is now available.

3.2.3 Searching the index

To search the created index for entries, a ‘search function’ is created. This function uses the same

index and type as the create function, being ‘google_translate’ and ‘translations’. Besides the index

and type, a search parameter needs to be provided. In this case, an MD5 hash is used to look for

matching hashes. The parameter name for the index’s MD5 hash is ‘orig_hash’, which is what is

needed when searching. The required query to search the ‘orig_hash’ can be seen in the image

bellow.

Figure 8: Elasticsearch ‘search function’

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 9

3.3 Settings

3.3.1 Creating the setting

The creating of settings is done by adding rows to the ‘settings_props’ table of the ‘Otys_tables’

database. This database creates basic settings based on a static template and has the option to

contain a simple enable/disable button or a simple dropdown list. To create a setting, a variety of

information must be provided.

- id: A unique value that can later be used to assign the made setting to a desired category.

- group_id: A value from 1 to 62 that assigns the setting to the chosen predefined group.

- code: A code that can be used to programmatically retrieve the value of that setting.

- name: Name that is shown in the settings menu.

- prop_type: Defines what prop type the setting has. This can be an ‘int, bool or string’.

- defval: The default value of the setting.

- use_type: To define if the setting is for clients, users or both.

The only exception out of the four settings, is the exclude language settings. This is the only setting

that requires a list instead of an enable/disable button. This is done by changing the ‘prop_type’ to

string and adding extra information to the ‘logical_subtype and ‘cdt_class’ of that setting. This extra

information is only necessary for this kind of setting.

- Logical_subtype: The kind of subtype. Options are ‘list, date and list_multiple’.

- cdt_class: The class the data must be fetched from.

To create this setting, the ‘logical_subtype’ is changed to ‘list_multiple’. This creates a dropdown list

of the received data from the ‘cdt_class’. To get the right data from the ‘cdt_class’, a link to the

‘CmsLanguages’ class is made. This class returns a list of all the CMS languages that need to be

selected from.

Figure 10: CmsLanguages class

Figure 9: ‘settings_props’ examples of translate settings

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 10

3.3.2 Linking the setting

To give the settings its own category, a category is added in the ‘settings_categories’ table. In this

table, a category is added by simply adding an entry with an original ID, the ID of the parent if the

category must become a subcategory, and a name.

To create a separate category named ‘Google Translate’, an entry is added with a unique ID and no

parent ID. This is to ensure the Google Translate category has no parent and becomes its own

category.

To make this category a bit more clear, a subcategory is added with the name ‘Basic settings’.

Figure 11: settings_categories table Google Translate and Basic Settings row

With these categories added, the new settings are linked to the new category by creating new

records with an original ID, the ID of the setting and the ID of the category.

Figure 12: settings_props_categories linking of settings

By linking the settings to the category, the linked settings are automatically added to the settings

menu.

Figure 13: Google Translate settings

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 11

3.4 Google’s Cloud Translation API

3.4.1 Integration

To integrate Google’s Cloud Translation API into the Otys app, a Cloud Platform project is needed. On

this platform, Otys has a project named ‘Otys’, which is required for Google’s Cloud Translation API

to be integrated.

With a project set up, a composer require command is executed to get the required files to connect

with Google’s API.

Figure 14: Composer install required to use Google’s Cloud Translation API in PHP

3.4.2 Usage

With these files obtained, it is possible to use the Google Translate API.

First, a function to instantiate a Google Translate Client is created. In this function, a new object of

the class ‘TranslateClient’ is instantiated with the ‘key’ value as a parameter. This key is generated by

enabling the API in the console of the created Google Cloud Platform project and enables translating

text and detecting languages.

Figure 15: Function to instantiate Google’s Cloud Translation API

With this function, it is possible to detect languages and translate text by using the instantiate

function, followed by the desired function.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 12

3.5 The translate button

3.5.1 layout changes

To translate a support ticket, a button is needed. This button is a small button containing the Google

Translate logo, created by Amanda Diana, and is located at the top right corner of the selected ticket.

Adding this to the front end required one line of HTML code and five lines of CSS code.

Figure 16: Support ticket with Google Translate button

The translate button uses the ‘isTranslated’ boolean defined in the controller, to determine the

layout of the button. If the ‘isTranslated’ boolean is false, the button shows a “normal” layout as

shown in Figure 16. If the ‘isTranslated’ boolean is true, the button shows a “pressed” layout as

shown in Figure 17.

Figure 17: Translated support ticket with Google Translate button

When opening the selected ticket, another Google Translate button can be found at the top right

corner, which also uses the ‘isTranslated’ boolean to determine its layout as shown in Figure 18. Both

buttons have the functionality of translating the currently selected ticket when clicked.

Figure 18: Detail view of a translated support ticket

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 13

3.5.2 Support controller

This button is linked to the ‘translate function’, which can be found in the controller of the support

feature. This controller has the responsibility of loading all tickets for the current user. In the

controller, a function is created with the name ‘translate’ which receives a ticket. When the function

is called, the ‘ticket, entity and entityId’ are forwarded to the service. This service returns the

translated ticket which is then swapped with the original ticket.

Figure 19: ‘Translate function’

Besides the ‘translate function’, a ‘translateOnPageLoad’ function is added to the ‘load function’ of

the support view. This function sends the currently loaded ‘ticket, entity and entityId’ to the service

when the page is loaded. If the settings are enabled, the function returns a ticket with a translated

subject and messages.

Figure 20: ‘TranslateOnPageLoad function’

Detail view

In the detailed view of the selected support ticket, the ‘translate and translateOnPageLoad functions’

are both used in the same way as the support view. However, in the detailed view, the user can

answer to the selected support ticket.

To enable correct answering, a separate function is created to verify if the save original setting is

enabled. If this setting is enabled, the reply is automatically translated to the original language of

that ticket and then added to the ticket. If not, the function returns the sent answer and adds that to

the ticket.

Figure 21: Detailed view ‘SaveOriginalTicket function’

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 14

3.6 The GoogleTranslateService

The ‘GoogleTranslateService’ is the communication between the support feature’s view and the

translate model. This service contains functions which call the respected ‘GoogleTranslateModel

functions’.

3.6.1 getModel

One of the first functions found in the ‘GoogleTranslateService’ is the ‘getModel function’. This

function is called in almost every function because it instantiates a ‘GoogleTranslateModel’ which

can then be used to call functions inside the ‘GoogleTranslateModel’ file.

Figure 22: ‘getModel function’ inside the ‘GoogleTranslateService’

3.6.2 translateOnPageLoad

This is the function that gets called whenever a support ticket is loaded. It calls the

‘translateOnPageLoad function’ in the ‘GoogleTranslateModel’ which results with either the

translated or original ticket, based on the enabled settings of the current profile.

Figure 23: ‘translateOnPageLoad function’ inside the ‘GoogleTranslateService’

3.6.3 translateTicket

The ‘translateTicket function’ is the function that is called when the translate button is pressed.

Inside this function, the’ translateOnButtonPress function’ of the ‘GoogleTranslateModel’ is called.

This function returns a ticket and a boolean containing a true or false value. This boolean,

‘isTranslated’, indicates if the given ticket has been translated or not. If the ticket has not been

translated, the original ticket is retrieved from the database.

The reason the original ticket is retrieved from the database instead of returning the given ticket is

because the given ticket can already be translated. When an already translated ticket is used with the

‘translateTicket function’, the service calls the model with the given ticket as a parameter. The

model, however, is not going to translate the given ticket because it is already written in the desired

language, meaning that it returns the given ticket and the ‘isTranslated boolean’ with a false value.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 15

If the service does not retrieve the original ticket afterwards, the already translated ticket is returned

with ‘isTranslated’ set to false, meaning that the front end gets the wrong boolean value and the

original ticket is never shown due to the fact that a translated ticket remains a translated ticket.

Figure 24: ‘translateTicket function’ inside the GoogleTranslateService

3.6.4 saveOriginalTicket

This is the function that is called just before a reply is added to the currently selected support ticket

and either returns the original or translated ticket.

First, the setting value is retrieved from the model, being either true or false. When the value is true,

it means that the given reply has to be translated to the original language of the selected ticket. If the

value is false, it means that the reply can be added to the selected ticket in its original state.

When the value is true, an instance of the ‘SupportService’ is made. This is to retrieve the currently

selected support ticket. With this ticket retrieved, the language of the first message is detected,

being the original message that created the support ticket. This detected language is then used to

translate the reply to the detected language by calling the

‘translateSourceTextToGivenLanguageCode function’. This function returns the translated version of

the provided reply which is then used to overwrite the original reply.

Lastly, the ticket is returned to the controller.

Figure 25: ‘saveOriginalTicket function’ inside the GoogleTranslateService

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 16

3.6.5 Model calls

Besides the previously mentioned functions, separate functions are written to allow each model

function to be used individually. This results in the service being reusable in a variety of scenarios as

every function related to translating can be found in this service.

Figure 26: Example functions of separate model function calls

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 17

3.7 The GoogleTranslateModel

This is the place which holds the most logic related to translating text and language detection. The

most important functions of this model are investigated.

3.7.1 translateOnPageLoad

This function is called by the ‘GoogleTranslateService’ whenever a ticket is loaded. It receives ‘entity,

entityId and ticket’ as parameters.

First, the translate setting status of the current profile is investigated. This, because when this setting

is false, the translate function in general is disabled.

When the translate status is enabled, the automatic translate setting status is investigated. If this

value is false, it means that the automatic translate setting is not enabled and the currently selected

ticket should not be translated.

However, when this automatic translate setting status is enabled, the mode of the currently selected

ticket is verified. If this mode is not “OFF”, the ‘entity, entityId and ticket’ are forwarded to the

translateTicket function, which translates the ticket to the current user’s profile language.

When the mode is “OFF” or the general or auto translate settings are disabled, the

‘translateOnPageLoad function’ does not return a translated ticket and instead returns the original

support ticket and the ‘isTranslated boolean’ with a false value.

Figure 27: ‘translateOnPageLoad function’

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 18

3.7.2 translateOnButtonPress

This is the function that the service calls whenever the translate button is pressed. This function,

looks at the user’s settings first.

The first settings that is looked at is the general translate setting. When this setting is enabled, the

automatic translate setting is investigated. This setting is quite important in the

‘translateOnButtonPress function’ as it indicates what happens when the button is pressed.

When the automatic translate setting is enabled, the mode of the currently selected ticket becomes

relevant. When the translate button is pressed with this setting enabled, the

‘switchGoogleTranslateMode function’ is called which either creates a database entry of the

currently selected ticket for the current user in the ‘gt_translate_mode’ table, or switches the mode

of the already existing entry to the opposite value.

Next, when the mode is “ON”, the ticket is translated. Afterwards, the translated ticket is compared

with the original ticket to compare if the tickets are the same. If the tickets are the same, the

translated ticket and the ‘isTranslated boolean’ with a false value are returned. If the tickets are not

the same, the translated ticket and the ‘isTranslated boolean’ with a true value are returned.

When the automatic translate setting is disabled, the ‘translateOnButtonPress function’ translates

the ticket and returns the ‘translatedTicket’ and an ‘isTranslated boolean’ based on if the ticket has

been translated or not. However, in this scenario the boolean is only false when the translated ticket

is the same as the original ticket, as this means that the ticket was already translated or the same

language as the user’s profile.

Figure 28: Code snippet of the translateOnButtonPress function

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 19

3.7.3 translateSourceTextToProfileLanguage

This is the function that is used whenever a ticket has to be translated and has ‘entity, entityId and

sourceText’ as parameters.

First, a list of excluded languages is obtained from the ‘getExcludedLanguages function’. After this,

the language of the sourceText is detected with the ‘googleTranslateDetectLanguageCode function’.

These two variables are then used to verify that the detected language is not one of the excluded

languages. If the detected language is written in one of the excluded languages, the original string is

returned. If not, the current user’s profile language is obtained with the use of the

‘getCurrentLanguageCode function’. This language code is then hashed with the source text to an

MD5 hash.

Next, the generated hash is searched in the Elasticsearch index with the use of the

‘elasticsearchSearch function’ to verify if the translation has already been made. This search is then

stored in the ‘result variable’. If the ‘result variable’ has more than zero hits, it means that the

translation has already been made and is stored in the variable that holds the result of the

‘elasticsearchSearch function’. If the result variable does not contain any hits, the given string is

translated to the current user’s profile language, stored in the Elasticsearch index and then returned.

This way, the translations are always returned correctly when being translated for the first time.

3.8 The test process

At Otys, a task is not done when a developer says so. A task has to be tested and reviewed by

multiple people first, creating a strict yet effective test process.

Whenever a developer resolves a task, the task is tested by Otys’s Test Engineer. The Test Engineer

verifies if the task works the way it is supposed to and gives feedback if necessary. When the tester

has no more feedback to give, the task is ready for code reviewing.

The code reviewing is initiated by pushing the code to the stable branch. The code is then available

on BitBucket, a code reviewing platform, where it is reviewed before it gets applied to the stable

branch. The submitted code, is reviewed by at least two mid-level or senior developers. These

developers review the code for suspicious or unnecessary code and provide feedback if necessary.

Once the code is reviewed, the code is merged to the stable branch. The task is assigned back to the

task owner, who reviews it one last time. If the task owner approves the result, the task is closed.

Figure 29: Code snippet of the ‘translateSourceTextToProfileLanguage function ’

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 20

3.9 Code review feedback

During the code reviewing process on the Google Translate task, a few minor changes are made to

the ‘GoogleTranslateModel’ and the controllers.

GoogleTranslateModel

Inside the ‘GoogleTranslateModel’, the “ON” and “OFF” values that were used to check if the mode

of the currently selected ticket were on or off, are changed from string values to global constants.

This results in better long term code as using constants prevent the possibility of mistyping values.

Figure 30: Defining of global constants.

Figure 31: Usage of the OFF constant

Next, ‘sleep(1)’ is removed from the translate functions. The reason it was initially written, was to

avoid the returning of an empty translation. This was the case when storing a string in Elasticsearch

because of the small delay it had. This resulted in the ‘search function’ returning an empty string

because the translation was still being stored. The ‘sleep function’ solved this issue by having the

application wait for a second, but was bad practice.

To solve this issue, the translated text that is being stored in Elasticsearch is returned instead of

searching for the just stored translation separately in the Elasticsearch index. This made it possible to

remove the ‘sleep function’ and prevent an unnecessary call to the Elasticsearch index.

Figure 32: Storing of a new translation in the Elasticsearch index

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 21

Front end

The first mistake that was made, was the use of ‘$rootScope’. This is a variable that should be used as

little as possible due to it being available in every file in the project. To prevent the use of

‘$rootScope’, a separate global value had to be created which could then be injected into the

necessary controllers or services, creating a shared singleton.

Figure 33: Global value 'translations'

Once this value is injected, it can then be used to manipulate the data inside which results in the

value of ‘isTranslated’ being manipulatable anywhere in the file, which is exactly what is needed. This

change prevents the polluting of the ‘$rootScope variable’ and results in a more efficient solution.

Figure 34: Using of the injected 'translations' singleton

Lastly, the use of the global ‘otysEntities class’ is used instead of hardcoding the values of the ‘$entity

and $entityId variable’. This is in general a better practice as it removes the possibility of human

error and creates a dynamic way of receiving the required data.

Figure 35: Usage of the ‘otysEntities class’

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 22

4 Reflection

Implementing Google Translate into Otys’s support feature has been a very interesting journey. I got

into contact with quite a few new technologies such as Otys Ruksak, AngularJS, Google’s Cloud

Translation API and Elasticsearch. Each of these had their own learning curve which made this project

very interesting.

This project has improved my debugging skills a lot which made me an overall better full-stack

developer. This because, prior to this internship, my full-stack developing skills were lacking as I only

focused on front end development during my IT-project. This resulted in the neglecting of my back

end developing knowledge. However, during this internship I had to write so much more back end

than front end code that it definitely closed the barrier between my front and back end knowledge

which is going to be very handy in my future working career.

The knowledge I gained in the programming languages PHP and AngularJS is also going to be worth

putting onto my resume, as these are very good languages to know. However, I am still more

interested in learning newer technologies, instead of the older ones as I feel like these will be more

useful in my future working career. Although, using older languages like PHP and AngularJS, both

have its advantages and disadvantages but surely makes me appreciate the newer programming

languages available.

Learning how to implement services like Google’s Cloud Translation API is also something I am very

happy about. This, because I am sure that there will be similar projects and or implementations in

the future which are going to be twice as easy to implement because of the experience I gathered

implementing it for Otys.

I also learned how to read and understand the documentation of APIs better, because of the

experience I gathered implementing Google’s Cloud Translation API and creating an Elasticsearch

index. This, because at first I did not spend much attention to the documentation of these services,

assuming I could implement it by myself without reading much. This was a big mistake and resulted

in me wasting quite some time and eventually going back to the documentation to read it more

clearly. Reading the documentation more clearly resulted in me being able to resolve my problems

quite rapidly and learn the importance of reading and understanding the provided documentation.

This project was a very pleasant project to work on as it had its challenges and obstacles which kept

the journey enjoyable and interesting. I am looking forward to working on projects like this in the

future!

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 23

II. Research topic

1 Research question

Otys is an international company with four different international offices and over 1200 customers

worldwide. Having so many different nationalities, comes with certain obstacles. One of those

obstacles is the communication between the customers and the developer from Otys.

Inevitably, there will be customers that are unable to communicate with developers from Otys,

which is a problem that needs to be solved. This is where Otys thought of implementing Google

Translate. Implementing this will provide the possibility of automatically detecting languages and

translating certain pages to the user's selected profile language which would quickly solve the

previously indicated obstacle.

In this whole concept of online translating, Google Translate is definitely a popular name. However, is

Google Translate the best option for Otys? This question is what is investigated in this research to

conclude which option of online language detecting and translating is most interesting for Otys.

2 Research method

2.1 Approach

In this research, the competitors of Google Translate on the topics of language detecting and

translating are looked at. Firstly, the function is investigated by looking into the code and logic

behind it. This is done by looking at tutorials of how language translations and detections are made,

which provides information of how this can be done on a larger scale.

Next, the options such as online APIs, packages and services for detecting and translating languages

are explored, with a focus on variables like setup and usage documentation, translation and

detection accuracy, and price per character.

Lastly, the advantages and disadvantages of each option are provided in a table, comparing the

different options with each other. These results are reviewed and formulated into a conclusion,

suiting the needs of Otys the best.

2.2 Analysis

To gather information, a multitude of sources like online articles about all kinds of language

detecting and translating APIs and libraries are examined. The respected documentation and setup

guides are consulted to get more information on the products and how it works.

Next, the APIs and libraries are tested on speed and accuracy, and the price of each option is

consulted and reviewed with each other.

2.3 Comparison

All the advantages and disadvantages of each API and library are critically reviewed and compared.

Using the gathered information makes it clear which product is best suited for which situation and

helps conclude which service is best suited for Otys.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 24

3 Research

3.1 Language Detection [1]

3.1.1 What is Language Detection

Natural Language Identification, is the problem of identifying which natural language a piece of

content is written in.

3.1.2 How Language Detection works

To detect a language, there are two most commonly used techniques:

- Stop words technique

- N-grams technique

Stop words

The stop words technique is the simplest but effective approach for language classifications. For this

technique, a corpus of words for each language has to be maintained, which is then used to check

the given text on the number of occurrences of such words. The number of occurrences is then

compared for each different language to identify the strongest correlation to a certain language. A

very common strategy is to choose the most used words, which are usually stop words, and use

these as a corpus to check which stop words are most frequently used in given text.

Lists of these stop words are very easily found on the internet and provide a good idea of how these

words can be used to detect languages. These lists can be found of almost any language which makes

this technique a simple alternative.

N-gram [1]

The N-grams technique is an advanced language detection algorithm which works by calculating and

comparing language profiles of character N-gram sequences. This can be seen as an N-character slice

of a string, with ‘N’ being dependant on the type of N-gram that is chosen.

An example with the word “TEXT”:

Figure 36: Example of different N-grams [1]

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 25

The most used range of ‘N’, varies from two to four. This is based on trade-offs which are depending

on the size of the dataset, desired accuracy of the model, and desired speed and memory efficiency.

The whole n-gram technique has its benefits when it comes to errors and accuracy when provided

less words. This, because when the text contains a few spelling errors, the remaining text is not

affecting the other n-grams which would not be the case when using a technique that uses complete

words, such as the stop word technique. Compared to the stop word technique, the n-gram

technique requires less words to be accurate which makes this an even better technique to detect

languages.

3.1.3 Where Language Detection is used

Natural language detection is used with neuro-linguistic programming (NLP) applications to detect

the used language as accurately as possible. Examples of these are spam filtering, machine

translation, etc...

Besides this, natural language detection is also used for search engines as they need to identify

search queries and the language of each web page before the engine can decide whether to show

the matched search results or not.

3.1.4 How Language Detection is checked

Checking the variety of options requires some consistent data. This is why there is a simple PHP file,

as Otys is PHP focused, containing five different strings, each with a different length.

The PHP file contains a very short, short, medium, long and very long string which contain randomly

generated text of the respected length in a certain language, meaning that each language has five

different strings.

The languages that are tested are English, Dutch, French and Spanish, as Otys is mainly based in

Europe and encounters these languages the most. These five strings are then used to detect the

language using the different kinds of services. After each detection process, there is looked at the

time it took to complete the request and how accurate the detection process was. This is done by

looking at the amount of confidence the process returned.

When these five strings are detected, the five strings are then used in an array to detect all five of the

languages at the same time. Here, only the duration of the request is looked at, as the detected

languages and confidence is the same.

With these five requests done, an average of the amount of confidence and the duration of all the

requests is made.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 26

3.1.5 What are the options

3.1.5.1 Language Detection API [2]

Introduction

Language Detection API is an API with the main focus of detecting the language of a given text. It

returns the detected language code with a confidence score and is currently detecting 164

languages.

It is recommended to use one of their official API clients made with Ruby, Python, Node, Java, PHP,

Crystal or C#. However, it is also possible to use the API directly.

Usage

Following the setup guide provided, it took a total of twenty minutes to get the language detecting

working in PHP. The reason it took this long was because of a small misconception in the API’s

readme file. In general, the installation process, using the PHP client, was well-written and easy to

follow.

The client contains a ‘detect function’ which can be used to detect the language of one string. This

function returns the language code, the confidence and if it is reliable. When the detected language

code is reliable, the ‘isReliable variable’ contains a one. If not, it contains a zero.

The same ‘detect function’ can also be used to detect the language of multiple strings. To use this

functionality, an array of strings is forwarded to the ‘detect function’.

Technical

The Language Detection API PHP client v2.2.1, requires a PHP version of 5.3.0 or higher to work.

Figure 37: Example of PHP code using the Language Detection API

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 27

Accuracy

English language Amount of chars Detected
language

Confidence Duration (seconds)

Very short text 26 En 9.86 0.1185870

Short text 285 En 12.18 0.1230969

Medium text 1285 En 11.30 0.1618218

Long text 3745 En 10.81 0.1768090

Very long text 15237 En 11.05 0.2146761

All of the above 20,578 / / 0.2155555

 100% Avg: 11.04 Avg: 0.1684243
Table 1: English text language detection with the Language Detection API

Dutch language Amount of chars Detected
language

Confidence Duration (seconds)

Very short text 30 Nl 15.52 0.1079351

Short text 372 Nl 8.1 0.1200931

Medium text 1030 Nl 8.22 0.1833770

Long text 3912 Nl 7.53 0.1685910

Very long text 14545 Nl 7.9 0.1783349

All of the above 19889 / / 0.2568740

 100% Avg: 9.45 Avg: 0.1692008
Table 2: Dutch text language detection with the Language Detection API

French language Amount of chars Detected
language

Confidence Duration (seconds)

Very short text 19 Fr 9.26 0.1111018

Short text 256 Fr 7.1 0.1322062

Medium text 1356 Fr 5.6 0.1724479

Long text 3540 Fr, En 5.03, 4.39 0.1616160

Very long text 15067 Fr 5.36 0.2266139

All of the above 20238 / / 0.2343690

 100% Avg: 6.47 Avg: 0.1730591
Table 3: French text language detection with the Language Detection API

Spanish language Amount of chars Detected
language

Confidence Duration (seconds)

Very short text 21 Sk 5.58 0.1493706

Short text 436 Es 8.8 0.1234459

Medium text 1239 Es 7.7 0.1785581

Long text 3975 Es 3.58 0.1604561

Very long text 15924 Es 3.58 0.2170610

All of the above 21595 / / 0.2267148

 80% Avg: 5.85 Avg: 0.1759344
Table 4: Spanish text language detection with the Language Detection API

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 28

Average

Name Language
detection accuracy

Average confidence Average duration
(seconds)

Language Detection API 95% 7.47 0.6866186
Table 5: Average results of the Language Detection API

Pricing

Plan name Requests/day MB/day Price/month

Free 1000 1 Free

Basic 100,000 20 $5

Plus 1,000,000 200 $15

Premium 10,000,000 2000 $40
Table 6: Pricing of the Language Detection API

Overall review

Language Detection API is a fairly accurate but slow API when it comes to detecting the language of a

string. Besides the speed, the costs can go all the way up to $40 a month which is quite a lot for a

language detecting API compared to other options, like Landrok’s language detector. The pricing

system is also not the most optimal for Otys, as Otys sends out many small requests instead of fewer

large requests. This means that a high limit of requests per day is needed which results in a more

expensive monthly bill.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 29

3.1.5.2 Patrick Schur’s language detection package [3]

Introduction

Patrick Schur’s language detection package is a free language detecting package which parses given

training texts into n-gram sequences which it then uses to build a database file in JSON format to be

used in the language detection phase. It can then take a given text and use the previously generated

database to detect up to 110 languages.

Usage

Trying to get this package working took around 25 minutes as finding the language detection files in

the project did not go very smoothly. A ‘require_once’ to the autoload.php file solved the issue.

This package provides a ‘detect function’ which can be used to detect a single string. On top of this

‘detect function’, a ‘white or blacklist function’ can be added to white or blacklist certain languages.

Besides the ‘white and blacklist functions’, a ‘bestResult function’ can be added to the ‘detect

function’, only returning the best matched result. If the ‘bestResult function’ is too limited, a custom

limit can be set by using the ‘limit function’ with the desired offset and length as parameters.

Technical

Patrick Schur’s language detection package requires a PHP version of 7.0 or higher to work.

Figure 38. Example of PHP code using Patrick Schur’s language detection package

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 30

Accuracy

English language Amount of
chars

Detected
language
(Limited to 3)

Confidence
(2 decimals)

Duration (seconds)

Very short text 26 En, La, Da 0.49, 0.41, 0.4 0.0050680

Short text 285 En, Da De 0.37, 0.29, 0.29 0.0072720

Medium text 1285 En, Fr, Af 0.48, 0.40, 0.39 0.0090141

Long text 3745 En, Ia, Fr 0.54, 0.42, 0.42 0.0121979

Very long text 15237 En, Ia, Fr 0.57, 0.45, 0.44 0.0247740

All of the above 20,578 / / 0.0442869

 100% Avg: 0.49 (En) Avg: 0.0171021
Table 7: English text language detection with Patrick Schur's language detection package

Dutch language Amount of
chars

Detected
language

Confidence Duration (seconds)

Very short text 30 Nl, Af, Tr 0.49, 0.48, 0.43 0.0053009

Short text 372 Nl, Af, De 0.39, 0.35, 31 0.0075200

Medium text 1030 Nl, Af, De 0.47, 0.43, 0.40 0.0092220

Long text 3912 Nl, Af, De 0.59, 0.52, 0.48 0.0117630

Very long text 14545 Nl, Af, De 0.59, 0.52, 0.46 0.0235469

All of the above 19889 / / 0.0450360

 100% Avg: 0.59 (Nl) Avg: 0.0170648
Table 8: Dutch text language detection with Patrick Schur's language detection package

French language Amount of
chars

Detected
language

Confidence Duration (seconds)

Very short text 19 Fr, Wo, Wa 0.41, 041, 0.38 0.0059640

Short text 256 Fr, Ia, En 0.35, 0.33, 0.31 0.0078361

Medium text 1356 Fr, Ca, Ia 0.48, 0.41, 0.39 0.0102820

Long text 3540 Fr, Ca, Ia 0.51, 0.43, 0.42 0.0117020

Very long text 15067 Fr, Ia, Ca 0.56, 0.44, 0.44 0.0234029

All of the above 20238 / / 0.0461249

 100% Avg: 0.56 (Fr) Avg: 0.0175519
Table 9: French text language detection with Patrick Schur's language detection package

Spanish language Amount of
chars

Detected
language

Confidence Duration (seconds)

Very short text 21 Gl, Io, Pt-br 0.45, 0.44, 0.44 0.0062689

Short text 436 Es, Gl, Pt-br 0.35, 0.34, 0.33 0.0080890

Medium text 1239 Es, Io, Ia 0.45, 0.41, 0.41 0.0088942

Long text 3975 Es, Gl, Pt-br 0.54, 0.48, 0.47 0.0116548

Very long text 15924 Es, Ia, Gl 0.56, 0.52, 0.52 0.0247399

All of the above 21595 / / 0.0457189

 100%* Avg: 0,47 (Es*) Avg: 0.0175609
Table 10: Spanish text language detection with Patrick Schur's language detection package

*Gl = Galician, is a language spoken in the north-western part of Spain where it is official along with Spanish [4]. As it can be

considered a type of Spanish, the language detection is still classified as correct.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 31

Average

Name Language
detection accuracy

Average confidence Average duration
(seconds)

Patrick Schur’s language
detection package

100% 0.53 0.0173199

Table 11: Average results of Patrick Schur’s language detection package

Pricing

Plan name Requests/day MB/day Price/month

None Unlimited Unlimited Free
Table 12: Pricing of Patrick Schur's language detection package

Overall review

Patrick Schur’s language detection package is a very reliable, fast and free option for detecting

languages. It has a good chance of being the best option for Otys if the application is rewritten in a

PHP version greater than or equal to 7.0. So unfortunately, this option is currently unavailable until

Otys decides to upgrade to PHP 7.0 or newer.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 32

3.1.5.3 Landrok’s language detector [5]

Introduction

Landrok’s language detector is a fast, reliable and databaseless language detecting library which is

packaged with a 2MB dataset. It uses the n-gram algorithm and supports more than fifty languages.

Usage

Getting the language detector running was a very smooth and simple process. It took less than five

minutes to get the language detector up and running as it only required a simple composer install.

The library has an ‘evaluate function’, which detects the language of the provided text. This function

can only be used with a single string, which means no arrays. However, this can quickly be solved by

creating a for each loop that evaluates every array item separately.

The ‘evaluate function’ only returns the language code of the language with the highest score.

Although, a list of evaluated languages with the scores can be shown when using the ‘getScores

function’. This function does not support the possibility of choosing a custom score range, meaning

that if fifty languages are evaluated, an array of fifty scores is returned.

Technical

Supported versions of PHP are 5.4, 5.5, 5.6, 7.0, 7.1, 7.2, 7.3 and HHVM

Figure 39: Example of PHP code using Landrok’s language detector library

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 33

Accuracy

English language Amount of
chars

Detected
language
(Limited to 3)

Confidence
(2 decimals)

Duration (seconds)

Very short text 26 En, Nl, Da 0.30, 0.27, 0.26 0.1171069

Short text 285 En, Nl, Da 0.65, 0.61, 0.60 0.1182370

Medium text 1285 En, Fr, Nl 0.81, 0.77, 0.76 0.2221648

Long text 3745 En, Nl, Af 0.89, 0.85, 0.83 0.2329368

Very long text 15237 En, Nl, Es 0.95, 0.89, 0.88 1.7598190

All of the above 20,578 / / 1.8932940

 100% Avg: 0.72 Avg: 0.7239264
Table 13: English text language detection with Landrok's language detector

Dutch language Amount of
chars

Detected
language

Confidence Duration (seconds)

Very short text 30 Nl, Af, Et 0.27, 0.27, 0.25 0.1196279

Short text 372 Nl, Af, Da 0.68, 0.67, 0.63 0.1242330

Medium text 1030 Nl, Af, De 0.79, 0.78, 0.73 0.1321249

Long text 3912 Nl, Af, De 0.90, 0.89, 0.83 0.2451438

Very long text 14545 Nl, Af, De 0.95, 0.94, 0.89 1.6162122

All of the above 19889 / / 1.7958858

 100% Avg: 0.72 Avg: 0.6722046
Table 14: Dutch text language detection with Landrok's language detector

French language Amount of
chars

Detected
language

Confidence Duration (seconds)

Very short text 19 Fr, Ro, It 0.21, 0.20, 0.20 0.1235361

Short text 256 Fr, It, Es 0.60, 0.58, 0.58 0.1278588

Medium text 1356 Fr, It, Es 0.79, 0.77, 0.76 0.1391110

Long text 3540 Fr, It, Es 0.86, 0.84, 0.83 0.2210631

Very long text 15067 Fr, It, Es 0.90, 0.89, 0.89 1.7205920

All of the above 20238 / / 1.8609628

 100% Avg: 0.67 Avg: 0.6988540
Table 15: French text language detection with Landrok's language detector

Spanish language Amount of
chars

Detected
language

Confidence Duration (seconds)

Very short text 21 It, Fr, Es 0.22, 0.22, 0.22 0.1219968

Short text 436 Es, Pt, It 0.70, 0.67, 0.66 0.1246540

Medium text 1239 Es, It, Pt 0.82, 0.79, 0.77 0.1337339

Long text 3975 Es, It, Pt 0.89, 0.87, 0.85 0.2495701

Very long text 15924 Es, It, Pt 0.94, 0.93, 0.89 2.0845348

All of the above 21595 / / 2.2079789

 80% Avg: 0.71 Avg: 0.8204114
Table 16: Spanish text language detection with Landrok's language detector

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 34

Average

Name Language
detection accuracy

Average confidence Average duration
(seconds)

Landrok’s language
detector

95% 0.70 0.7288498

Table 17: Average results of Landrok's language detector

Pricing

Plan name Requests/day MB/day Price/month

None Unlimited Unlimited Free
Table 18: Pricing of Landrok's language detector

Overall review

Landrok’s language detector is a relatively accurate but slow library. It takes Landrok’s language

detector on average over forty times as long to detect the language of a string compared to Patrick

Schur’s language detection package. The good aspect of this library is that it is easy to get running

and completely free.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 35

3.1.5.4 Cloud Translation API

Introduction [6]

Cloud Translation is the most famous translating service. It detects more than 100 different

languages, is very scalable, hosted by Google and is constantly being updated to create an even more

accurate result.

Usage [6]

Getting the Cloud Translation API working does not take long at all. All it takes is a quick composer

install and an API key to get it up and running. However, this API key requires credit card details as it

is a paid API. Luckily, signing up results in a free 300$ worth of credit.

The Cloud Translation API has a few functions relevant to language detecting. One of them is the

‘detectLanguage function’. This function returns the detected language of a given string. In case the

language of multiple strings has to be detected, an array of strings can be provided to the

‘detectLanguageBatch function’. This function then returns an array of all the detected languages. [7]

The API also provides a languages function which returns a list of all supported language codes.

Technical [8]

The Cloud Translation API can be used by C#, Go, Java, Node.js, PHP, Python and Ruby. The Google

Cloud PHP Client that is used for this research is written in PHP version 7.2, but is also usable by older

versions.

Figure 40: Example of PHP code using the Cloud Translation API

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 36

Accuracy

English language Amount of
chars

Detected
language
(Limited to 3)

Confidence
(2 decimals)

Duration (seconds)

Very short text 26 En 1 0.1426210

Short text 285 En 1 0.1755671

Medium text 1285 En 1 0.1473779

Long text 3745 En 1 0.2853870

Very long text 15237 En 1 0.3670690

All of the above 20,578 / / 0.3781759

 100% Avg: 1 Avg: 0.2018018
Table 19: English text language detection with the Cloud Translation API

Dutch language Amount of
chars

Detected
language

Confidence Duration (seconds)

Very short text 30 Nl 1 0.1649849

Short text 372 Nl 1 0.1494100

Medium text 1030 Nl 1 0.2443430

Long text 3912 Nl 1 0.2513930

Very long text 14545 Nl 1 0.3805489

All of the above 19889 / / 0.4431231

 100% Avg: 1 Avg: 0.2723004
Table 20: Dutch text language detection with the Cloud Translation API

French language Amount of
chars

Detected
language

Confidence Duration (seconds)

Very short text 19 Fr 1 0.1652860

Short text 256 Fr 0.92 0.1712210

Medium text 1356 Fr 0.86 0.2454109

Long text 3540 Fr 0.81 0.2602469

Very long text 15067 Fr 0.87 0.3798430

All of the above 20238 / / 0.4151090

 100% Avg: 0.89 Avg: 0.2743695
Table 21: French text language detection with the Cloud Translation API

Spanish language Amount of
chars

Detected
language

Confidence Duration (seconds)

Very short text 21 Es 1 0.1437361

Short text 436 Es 1 0.1396150

Medium text 1239 Es 1 0.1541130

Long text 3975 Es 1 0.2596190

Very long text 15924 Es 1 0.2995920

All of the above 21595 / / 0.4376020

 100% Avg: 1 Avg: 0.2390461
Table 22: Spanish text language detection with the Cloud Translation API

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 37

Average

Name Language
detection accuracy

Average confidence Average duration
(seconds)

Cloud Translation API 100% 0.97 0.2468794
Table 23: Average results of the Cloud Translation API

Pricing

Plan name Pricing

Standard $20 for every 1 milion character
Table 24: Pricing of the Cloud Translation API

Overall review

The Cloud Translation API is the current option that Otys uses. But is it that good compared to the

other options? The Cloud Translation API is very accurate and fast compared to the Language

Detection API. However, the price is an important factor here. Costing $20 for every million

characters detected can be quite costly when used by many people. If money is irrelevant, this

option is very good for Otys due to no PHP version limitation.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 38

3.1.5.5 Pear’s language detection package [9]

Introduction

Pear’s language detection library is a php library created to identify human languages from text

samples. Currently the library is maintained by inactive user Nicholas Pisarro.

Usage

Getting Pear’s language detection library running did not take long at all. It required a quick pear

install and a composer require to get the library working which was quite convenient. The library

does not have any special functions besides a ‘detectSimple and detect function’.

The ‘detectSimple function’ returns a string of the detected language, while the ‘detect function’ has

an extra parameter which has the option to decide the desired amount of results. For example, when

the value of three is provided, the three results with the highest confidence are returned.

Technical

Pear’s Language Detection library requires a PHP version of 5.4 [10] or higher.

Figure 41: Example of PHP code using the Pear Language Detection library

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 39

Accuracy

English language Amount of
chars

Detected
language
(Limited to 3)

Confidence
(2 decimals)

Duration (seconds)

Very short text 26 En, Et, Da 0.30, 0.15, 0.13 0.0020950

Short text 285 En, [*], It 0.31, 0.20, 0.19 0.0033979

Medium text 1285 En, [*], De 0.36, 0.26, 0.24 0.0064900

Long text 3745 En, [*], Fr 0.45, 0.27, 0.24 0.0100350

Very long text 15237 En, [*], Fr 0.48, 0.30, 0.29 0.0228531

All of the above 20,578 / / 0.0452180

 100% Avg: 0.38 Avg: 0.0150148
Table 25: English text language detection with Pear's language detection package

*Empty bracket was returned. This is probably one of the two bugs that is unresolved.

Dutch language Amount of
chars

Detected
language

Confidence Duration (seconds)

Very short text 30 Nl, Et, Hu 0.28, 0.16, 0.16 0.0020640

Short text 372 Nl, Da, De 0.30, 0.22, 0.20 0.0038960

Medium text 1030 Nl, De, En 0.35, 0.25, 0.23 0.0059409

Long text 3912 Nl, De, Da 0.46, 0.30, 0.28 0.0095069

Very long text 14545 Nl, De, Da 0.50, 0.32, 0.27 0.0212709

All of the above 19889 / / 0.0451269

 100% Avg: 0.38 Avg: 0.0146343
Table 26: Dutch text language detection with Pear's language detection package

French language Amount of
chars

Detected
language

Confidence Duration (seconds)

Very short text 19 Ro, Fr, La 0.25, 0.23, 0.18 0.0020280

Short text 256 Fr, Es, It 0.26, 0.20, 0.19 0.0034740

Medium text 1356 Fr, Es, En 0.32, 0.23, 0.23 0.0079210

Long text 3540 Fr, Es, It 0.38, 0.26, 0.25 0.0097761

Very long text 15067 Fr, En, It 0.44, 0.29, 0.27 0.0218479

All of the above 20238 / / 0.0414879

 80% Avg: 0.33 Avg: 0.0144224
Table 27: French text language detection with Pear's language detection package

Spanish language Amount of
chars

Detected
language

Confidence Duration (seconds)

Very short text 21 Pt, Es, It 0.33, 0.25, 0.20 0.0019851

Short text 436 Es, It, Pt 0.23, 0.22, 0.20 0.0043011

Medium text 1239 Es, Pt, It 0.34, 0.28, 0.26 0.0067257

Long text 3975 Es, Pt, It 0.41, 0.36, 0.33 0.0122800

Very long text 15924 Es, Pt, It 0.44, 0.39, 0.34 0.0240300

All of the above 21595 / / 0.0447490

 80% Avg: 0.35 Avg: 0.0156785
Table 28: Spanish text language detection with Pear's language detection package

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 40

Average

Name Language
detection accuracy

Average confidence Average duration
(seconds)

Pear’s Language Detection
package

90% 0.36 0.0149375

Table 29: Average results of Pear's Language Detection package

Pricing

Plan name Pricing

Standard Free
Table 30: Pricing of Pear's Language Detection package

Overall review

Pear’s Language Detection package is the fastest yet least accurate option, is completely free and

easy to install. However, the loss in accuracy makes this option a bit less interesting compared to its

competitors.

3.1.6 Comparison

The most important components of a language detection service, is its ability to detect the language

fast and accurate for as little money as possible. Reviewing these five services provided a variety of

results.

Name Language
detection
accuracy

Average duration
(seconds)

Price

Language Detection API 95% 0.6866186 $0 - $40*

Patrick Schur’s language
detection package

100% 0.0173199 Free

Landrok’s language
detector

95% 0.7288498 Free

Cloud Translation API 100% 0.2468794 $20/1M chars

Pear’s Language
Detection package

90% 0.0149375 Free

Table 31: Comparison of the different language detection options

*Dependant on plan

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 41

3.1.7 Conclusion

When looking at the results of each language detection option, the shorter strings is where the errors

originate. Even the language detecting options that got the shorter strings right, did not have a lot of

margin in confidence. This is where the importance of these errors in a real-life situation has to be

looked at.

In a real-life scenario, a support ticket has a length of anywhere from 50 to 500 characters, which

means that the length of the support ticket is relevant but only to a certain extent. This is why it is

more important to look at the “short text” string compared to the “very short text” string, as this is a

string of around 250 – 400 characters.

The “short text” string’s language, has been successfully detected by every language detection

option. This means that in a real-life use case, the chance of all language detection options detecting

the right language is very high. In result, it is more interesting to look at how fast a language was

detected compared to how accurate it was.

The speed of which the language detection options detected the language, is on average for all

options less than a second. Nonetheless, Patrick Schur’s language detection package and Pear’s

Language Detection package have an average language detection of less than 0.02 seconds.

However, Pear’s Language Detection package is a bit faster with an average language detecting

duration of 0.0149375 seconds, compared to Patrick Schur’s 0.0173199 seconds.

Price-wise, the free options take the win as they can be used as many times a day as the user pleases.

This results in Patrick Schur’s language detection package, Landrok’s language detector and Pear’s

Language Detection package being the best options when it comes to the price.

In conclusion, it is safe to conclude that Patrick Schur’s language detection package is the best option

out of all. Unfortunately, due to a restriction of PHP 7.0, this option can only be used after upgrading

to PHP 7.0. This means that the question lies between Pear’s fast Language Detection package, which

sacrifices a bit of accuracy at a free cost, versus the Cloud Translation API which has an almost

perfect accuracy with a medium detection speed at a high cost of $20 per million characters.

Taking into account the average length of a support ticket and how accurate every option is when

given a string of 250-400 character, the best option for Otys is Pear’s Language Detection package.

This due to its fast, free and relatively accurate language detection. However, when Otys upgrades to

PHP 7.0, Patrick Schur’s language detection package will be the best option.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 42

3.2 Text Translation

3.2.1 What is Text Translation [11]

Machine Translation (MT) refers to automated software that has the possibility of translating source

content into target languages. People can use MT to help them translate text into different

languages.

3.2.2 Approaches [11]

There are three main approaches to machine translation:

Rule-based machine translation [12]:

Rule-based machine translation (RBMT) systems were the first commercial machine translation

systems and are based on linguistic rules that allow the words to be put in different places and to

have different meaning depending on the context.

Statistical systems [13]:

Statistical machine translation (SMT) analyses already existing human translations. SMT systems are

phrased based, which means they take sequences of words, and creates translations with

overlapping phrases. With this technology, it is possible to reduce the restrictions of word-based

translations by translating full sequences of words with different lengths.

Neural MT [14]:

Neural machine translation (NMT) is a form of machine translation that uses a large artificial neural

network to foresee the likelihood of a sequence of words, usually modelling sentences in an

individually integrated model.

3.2.3 How Text Translation is checked

To check the variety of options available, a simple PHP file is used, as Otys is PHP focused, containing

four different strings.

The four provided strings have a similar size but different complexity and are all written in different

languages, Czech, Dutch, French and English. The reason these languages are chosen, is because

these are the languages most spoken by the clients of Otys.

Complexities:

- Kid’s tale: Contains limited and easily readable vocabulary.

- Fictional article: Contains mediocre and frequently used vocabulary and grammar.

- Scientific article: Contains sophisticated terminology and vocabulary.

Each text is translated to English and is afterwards reviewed for mistakes. Every major correction

made to the translated text, is counted and evaluated, creating an overview of the number of

mistakes every text translation option made. Besides the mistakes, the speed and price of the

translations are also reviewed and compared with the other translate options.

All this data then provide a clear view of which option is best suited for Otys.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 43

3.2.4 Used text

Kid’s tale

Dutch version [15]

Een magere, sterke hond, die niet erg goed bekend stond, kwam eens op een dag langs een slagerswinkel. Daar zag hij een

hoop smakelijke botten op de toonbank liggen. Hij pakte er een en rende weg.

Later, onderweg, passeerde hij een rivier. Halfweg de brug zag hij toevallig zijn spiegelbeeld in het water beneden zich.

Omdat hij dacht, dat het een andere hond was, die een even smakelijk bot in zijn bek had, besloot hij handelend op te

treden.

Hij gromde en hapte naar de hond in het water. Hij deed zijn kaken van elkaar om zijn scherpe tanden te laten zien en zo zijn

vijand bang te maken. Natuurlijk viel het bot toen prompt uit zijn bek en plonsde het in het water. Het bot zonk naar de

bodem buiten zijn bereik en het was voor altijd weg.

English version

A skinny, strong dog, who was not very well known, visited a butcher’s shop one day. There, he saw a lot of tasty bones on

the counter. He grabbed one and ran away.

Later, on the way, he passed a river. Halfway through the bridge he happened to see his reflection in the water below.

Because he thought it was another dog that had an equally tasty bone in its mouth, he decided to act.

He growled and gasped at the dog in the water. He pulled his jaws apart to show his sharp teeth and scare his enemy. Of

course the bone then fell out of his mouth promptly and splashed into the water. The bone sank to the bottom out of its

reach and it was gone forever.

Czech version

Jeden hubený, silný pes, který nebyl příliš známý, navštívil jeden den řeznictví. Na pultu viděl spoustu chutných kostí. Popadl

jednu a utekl.

Později na cestě míjel řeku. V polovině mostu viděl svůj odraz ve vodě . Protože si myslel, že je to další pes, který měl v ústech

stejně chutnou kost, rozhodl se jednat.

Zavrčel a odfrkl na psa ve vodě. Vytáhl čelisti, aby ukázal své ostré zuby a vyděsil svého nepřítele. Ale upustil kost z úst a

spadl do vody. kost se rychle potopila na dno za jeho dosah a byla navždy ztracena.

French version

Un chien maigre et fort, qui n’était pas très connu, s’est rendu un jour dans une boucherie. Là, il a vu beaucoup d’os

savoureux sur le comptoir. Il en a attrapé un et s'est enfui.

Plus tard, sur le chemin, il a passé une rivière. Au milieu du pont, il voyait son reflet dans l'eau ci-dessous. Parce qu'il pensait

que c'était un autre chien qui avait un os tout aussi savoureux dans la gueule, il décida d'agir.

Il grogna et haleta au chien dans l'eau. Il écarta les mâchoires pour montrer ses dents acérées et pour effrayer son ennemi.

Bien sûr, l'os est ensuite rapidement tombé de sa bouche et s'est éclaboussé dans l'eau. L'os a coulé au fond hors de sa

portée et il était parti pour toujours.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 44

Fictional article

Dutch version

Afgelopen vrijdag is er om 9 uur ‘s avonds een kettingbotsing gebeurd op de snelweg richting Duitsland. Dit was ten

oorzaken van hevige regen en lage wolken. Het aantal doden loopt al snel op tot vijf, waarvan drie Belgen en twee Duitsers.

De politie raadt de mensen af de snelweg richting Duitsland de komende 12 uur te gebruiken om zo files te vermijden.

English version

Last Friday at 9 o'clock in the evening a chain collision happened on the highway to Germany. This was due to heavy rain

and low clouds. The number of deaths quickly rises to five, of which three are Belgian and two are German.

The police advise people not to use the highway to Germany for the next 12 hours to avoid traffic jams.

Czech version

Minulý pátek v 9 hodin večer se na dálnici do Německa stalo hromadná nehoda. Příčinou byl silný déšť a nízká oblačnost.

Počet úmrtí rychle stoupá na pět, z nichž tři oběti jsou z Belgie a dvě z Německa .

Policie doporučuje lidem, aby po dalších 12 hodin nepoužívali dálnici do Německa, aby se vyhnuli obrovským dopravním

zácpám.

French version

Vendredi dernier à 9 heures du soir, une collision en chaîne s'est produite sur l'autoroute en direction de l'Allemagne. Cela

était dû aux fortes pluies et aux nuages bas. Le nombre de morts s'est élèvé rapidement à cinq, dont trois belges et deux

allemands.

La police recommande aux personnes de ne pas emprunter l'autoroute en direction d’Allemagne pendant les 12 prochaines

heures pour éviter les embouteillages.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 45

Scientific article

Dutch version

In het verleden betekende dit een minicomputer en tegenwoordig een microprocessor, maar in beide gevallen leven de

tradities van programmeren op machineniveau, die van nature de pioniersdagen van computing domineerden, verder in het

real-time domein. Daarom is er een sterke affiniteit tussen de activiteiten van de samenleveing en die van de real-time

computerwereld.

English version [16]

In the past this meant a minicomputer and nowadays a microprocessor, but in either case the traditions of machine level

programming, that naturally dominated the pioneering days of computing, live on in the real-time domain. There is

therefore a strong affinity between the activities of the Society and the real-time computing world.

Czech version

V minulosti to znamenalo minipočítač a v současné době mikroprocesor, ale v obou případech tradice strojového

programování, která přirozeně dominovala průkopnickému období práce na počítači, přežívá až dodnes. Proto existuje silná

spřízněnost mezi aktivitami Společnosti a současným počítačovým světem.

French version

Dans le passé, il s’agissait d’un mini-ordinateur et d’un microprocesseur, mais dans les deux cas, les traditions de la

programmation au niveau de la machine, qui ont naturellement dominés les débuts de l'informatique, perdurent dans le

domaine du temps réel. Il existe donc une forte affinité entre les activités de la société et celles du monde de l'informatique

en temps réel.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 46

3.2.5 What are the options

3.1.5.4 Cloud Translation API

Introduction [6]

Cloud Translation is the most famous translating service. It detects more than 100 different

languages, is very scalable, hosted by Google is constantly being updated to create an even more

accurate result.

Usage [17]

Getting Google’s Cloud Translation API ready did not take any extra time as it was already installed

for the language detection part of this research. However, getting the API ready is a very easy and

straight forward process due to Google’s simple setup guides found on the Google Cloud Platform.

Technical [18]

As mentioned above, the Cloud Translation API can be used by C#, Go, Java, Node.js, PHP, Python

and Ruby. The Google Cloud PHP Client that is used for this research is written in PHP version 7.2, but

is also usable by older versions.

Figure 42: Example of PHP code using the Cloud Translation API to translate an array of text

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 47

Accuracy

Dutch to English

Difficulty of text Amount of critical
corrections

Duration (seconds) Do the mistakes result in
misconceptions (Yes/No)

Easy 0 0.4713380 No

Medium 0 0.0633981 No

Hard 0 0.1320028 No

 Total: 0 Avg: 0.2222463 0%

Table 32: Dutch to English text translation results of the Cloud Translation API

French to English

Difficulty of text Amount of critical
corrections

Duration (seconds) Do the mistakes result in
misconceptions (Yes/No)

Easy 0 0.1463029 No

Medium 0 0.0697190 No

Hard 0 0.0593049 No

 Total: 0 Avg: 0.0917756 0%

Table 33: French to English text translation results of the Cloud Translation API

Czech to English

Difficulty of text Amount of critical
corrections

Duration (seconds) Do the mistakes result in
misconceptions (Yes/No)

Easy 1 0.4462859 Yes

Medium 1 0.1819918 Yes

Hard 0 0.3706610 No

 Total: 2 Avg: 0.3329796 66.66%

Table 34: Czech to English text translation results of the Cloud Translation API

Average

Name Total amount of
critical corrections

Average duration
(seconds)

Average
misconception rate

Cloud Translation API 2 0.2156672 22.22%
Table 35: Average text translation results of the Cloud Translation API

Pricing

Plan name Pricing

Standard $20 for every 1 milion character
Table 36: Text translation pricing of the Cloud Translation API

Overall review

The Cloud Translation API is the current option that Otys uses. It provides very accurate and fast

translations. However, the price of $20 for every million characters is what makes this option a bit

less interesting. As mentioned in the language detection part of this research, if money is irrelevant,

Google’s Cloud Translation API would certainly be a good option.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 48

3.1.5.4 Microsoft’s Translator Text API

Introduction [19]

Microsoft, also being a known name in the information technology industry, also has its own text

translating API. It is able to detect over sixty different languages and can be used with any operating

system for text-to-text language translation. It uses Neural Machine Translating to provide high-

quality AI-powered machine translations.

Usage [20]

Getting Microsoft’s Translator Text API running is a bit more complicated than expected. At first, it

requires an Azure account, which does not take that long to create. Next, an API key is needed. This

can be quite confusing as Microsoft Azure has a lot of features. One of the setup guides found on the

internet, indicated to create a “Cognitive service”, which has an API key. However, this API key does

not work for translating. Eventually, it turns out a separate resource has to be created in the Azure

portal, specifically for the Translator API. With this resource created, a working API key is provided.

With this API key and a quick online search, a complete PHP file for Microsoft’s Translator API is

available. With the PHP file and key ready, the translating can begin.

The example code provided by Microsoft, only provided a ‘Translate function’ without any extra

features besides the possibility of translating one string to multiple languages in one go. This is done

by adding the desired languages to the ‘params variable’.

Technical [19]

Using Microsoft’s Translator Text API is usable with C#, Go, Java with a JDK of 7 or later, Node.js with

a version of 8.12.x or later, PHP with a version of 5.6.x or later, Python version 2.7 or 3.x or Ruby 2.4.

For each of these programming languages a code example is available of how to use it in an

application.

Figure 43: Example of PHP code using Micosoft’s Translation Text API to translate an array of text

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 49

Accuracy

Dutch to English

Difficulty of text Amount of critical
corrections

Duration (seconds) Do the mistakes result in
misconceptions (Yes/No)

Easy 1 0.9249131 Yes

Medium 1 0.3250720 Yes

Hard 0 0.4971371 No

 Total: 2 Avg: 0.5823741 66.66%

Table 37: Dutch to English text translation results of Microsoft's Translator Text API

French to English

Difficulty of text Amount of critical
corrections

Duration (seconds) Do the mistakes result in
misconceptions (Yes/No)

Easy 0 0.7983501 No

Medium 0 0.2511041 No

Hard 0 0.3503010 No

 Total: 0 Avg: 0.4665850 0%

Table 38: French to English text translation results of Microsoft's Translator Text API

Czech to English

Difficulty of text Amount of critical
corrections

Duration (seconds) Do the mistakes result in
misconceptions (Yes/No)

Easy 2 0.2155261 Yes

Medium 1 0.2457909 Yes

Hard 1 0.3307621 Yes

 Total: 4 Avg: 0.2640263 100%

Table 39: Czech to English text translation results of Microsoft's Translator Text API

Average

Name Total amount of
critical corrections

Average duration
(seconds)

Average
misconception rate

Microsoft’s Translator
Text API

6 0.4379618 55.55%

Table 40: Average text translation results of Microsoft's Translator Text API

Pricing

Plan name Pricing

Instance 2M chars/month

Pay-as-you-go $10/M chars

Volume discunt: S2 $2,055,001/month - $8.22/M chars

Volume discunt: S3 $6,000/month - $6/M chars

Volume discunt: S4 $45,00/month - $4.5/M chars
Table 41: Text translation pricing of Microsoft's Translator Text API

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 50

Overall review

Microsoft’s Translator Text API did not give a great impression when setting up due to it’s not that

easy to navigate Microsoft Azure portal. As a first time user, navigating here is quite overwhelming

and can lead to quite some time looking for the right service.

However, with the API key and test file set up, Microsoft’s API did not perform as well as expected.

Using the test file was a lot more complicated than its competitors. The API’s results are decent but

far from flawless, with an average misconception rate of 77.66%. This API is definitely not as accurate

as its competitors. However, the pricing of Microsoft’s Translator Text API is one of the cheaper

alternatives, pricing at $10 for every million characters. However, with the misconception rate being

so high, the lower price might not be low enough for this API to be worth it over its competitors.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 51

3.1.5.4 Yandex Translate API

Introduction [21]

The Yandex Translate API is a universal text translation tool which uses Yandex’s developed machine

translation technology. The API is made to allow developers to integrate machine translations into

their services, applications and websites, and offers support for more than ninety languages.

Usage

To use Yandex’s Translate API, an API key needs to be obtained. This can be done by creating an

account and navigating to the “API keys” tab. Here, a click on the “Create a new key” button

generates the API key which can then be used to translate the desired fragments of text.

Next, a script is needed to use the API. For this, a quick search on the internet results in an unofficial

Yandex PHP [22] package on GitHub. To implement this package, a few lines are added to the

composer.json file, followed by a composer install. With this installed, the Yandex Translate API can

be used.

The functions provided by this package are ‘translate’, ‘getSource’, ‘getSourceLanguage’ and

‘getResultLanguage’. The ‘translate function’ has the functionality to translate the given bit of text to

the provided language.

When the result of a translation is stored in a variable, the other three functions can be used on that

variable. Each of these functions then return the result the function name implies.

Technical

Using this PHP package requires a PHP version of 5.3 or later. Besides PHP, the API can be used in an

HTTPS format or with the use of CURL.

Figure 44: Example of PHP code using Yandex’s Translate API to translate an array of text

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 52

Accuracy

Dutch to English

Difficulty of text Amount of critical
corrections

Duration (seconds) Do the mistakes result in
misconceptions (Yes/No)

Easy 4 1.2659990 Yes

Medium 0 0.6874439 No

Hard 1 0.4621880 Yes

 Total: 5 0.8052103 66.66%

Table 42: Dutch to English text translation results of Yandex's Translate API

French to English

Difficulty of text Amount of critical
corrections

Duration (seconds) Do the mistakes result in
misconceptions (Yes/No)

Easy 0 1.2240948 No

Medium 1 0.6035750 Yes

Hard 0 0.5134909 No

 Total: 1 0.7803869 0.33%

Table 43: French to English text translation results of Yandex's Translate API

Czech to English

Difficulty of text Amount of critical
corrections

Duration (seconds) Do the mistakes result in
misconceptions (Yes/No)

Easy 2 0.8393910 Yes

Medium 2 0.3288631 Yes

Hard 0 0.3024690 No

 Total: 4 0.4902410 66.66%

Table 44: Czech to English text translation results of Yandex's Translate API

Average

Name Total amount of
critical corrections

Average duration
(seconds)

Average
misconception rate

Yandex Translate 10 0.6919460 55.55%
Table 45: Average text translation results of Yandex's Translate API

Pricing

Plan name Pricing

Free 1M/day and 10M/month

Number of characters for the reporting period < 50M = $15/M char
50M < 100M = $12/M char
100M < 200M = $10/M char
200M < 500M = $8/M char
500M < 1000M = $6/M char

Table 46: Text translation pricing of Yandex's Translate API

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 53

Overall review

Using Yandex’s Translate API is one of the most straight forward APIs to use. Getting an API key only

takes three clicks and is then completely ready to use. Besides the API key, there are multiple clients

created by Yandex users to simplify other people’s experience which makes Yandex a very easy to

use competitor.

However, the accuracy of Yandex is definitely not as good as its competitors, having a total of ten

critical mistakes. Besides the critical mistakes, Yandex’s Translate API makes quite some grammatical

mistakes. These grammatical mistakes often make the text still understandable, but make it quite a

bit more unclear for the user.

3.2.6 Comparison

The most important components of a language translation API, is its ability to detect the language

fast and accurate for as little money as possible. Reviewing these five services provided a variety of

results.

Name Total
amount of
critical
corrections

Average
misconception
rate*

Average
duration
(seconds)

Price

Google’s Cloud
Translation API

2 22.22% 0.2156672 $20/M characters

Microsoft’s
Translator text API

6 55.55 0.4379618 1) 2M chars/month for free

2) $10/M chars

Yandex Translate
API

10 55.55% 0.6919460 1) 1M/day and 10M/month
for free

2) < 50M = $15/M char

Table 47: Comparison of the text translation options

*Chance of changing the context of a sentence which would create a misconception.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 54

3.2.7 Conclusion

With the data provided from researching the text translating APIs, the best option can be concluded

based on the speed, accuracy and pricing.

Google’s Cloud Translation API is a very accurate and fast translating API, being the fastest and most

accurate out of its competitors. It made three times less critical mistakes than Microsoft’s Translator

Text API and five times less critical mistakes than Yandex’s Translate API, making this the best choice

based on accuracy.

Speed wise, Google’s Cloud Translation API is also a clear winner, with an average translating speed

of around 0.2 seconds, being twice as fast as Microsoft’s 0.4 second average and more than three

times faster than Yandex’s 0.7 second average.

However, pricing is where Google’s Cloud Translation API cuts short, being the most expensive API

out of its competitors with Microsoft’s API being half of Google’s price at $10 for every million

characters compared to Google’s $20 for every million characters. This is where Yandex is on the

middle ground, pricing its service at $15 for every million characters translated.

With this provided data, Yandex is definitely not a valid alternative for Google’s Cloud Translation

API, being only $5 cheaper than Google with a drastic drop in accuracy and speed.

This results in Microsoft being left versus Google. Microsoft, being twice as cheap but also twice as

slow and inaccurate, results in the discussion of price versus accuracy and speed. To solve this

discussion, the actual use for Otys needs to be considered.

With text translation being used at the support feature of Otys, the amount of characters an average

support ticket has and the importance of an accurate translation needs to be reviewed. With an

average of 500 character for every support ticket, a small translating mistake can make a support

ticket’s core message become different and result in wrong information being delivered to the

person reading. With this in mind, the importance of an accurate translation becomes even greater.

Besides the accuracy of translations, the amount of different tickets that can be translated with one

million characters is around 2000. Having every translation stored in Elasticsearch, results in every

ticket being translated only once. This means that not many API calls are made in general, as every

translation is reused. This results in the pricing being a lot less important than the accuracy of the

translation.

This information concludes that Google’s Cloud Translation API is the best choice for translating

Otys’s support tickets.

Responding to support tickets in an unfamiliar language – Jonathan Lauwers
 55

4 Conclusion

To conclude this thesis, Otys’s demand to use Google Translate in the Support feature of their

application has been a success with new technologies being learned and personal skills being

developed further. Skills like debugging, PHP programming and AngularJS, have all been developed

and can be read more about in the reflection of my thesis task.

The research regarding Google Translate’s competitors resulted in Google Translate being the best

option for text translation but not the best for text detecting. Pear’s and Patrick Schur’s language

detection packages are better and cheaper, making these two options the better choice in its own

situation. More information about these two options can be found in the research part of this thesis.

During this thesis, I have developed my overall programming and professional skills a lot more. Not

having to program in PHP for quite some time made back-end developing a bit harder at first.

However, it did not stop me from completing my task and resulted in me further developing my

back-end skills and becoming a better full-stack developer.

During the research part of this thesis, I learned about different packages and APIs. Due to the many

packages and APIs I had to use in my research, I am able to read documentation more fluent and

integrate different APIs and packages more efficiently.

Looking back at this bachelor project, I am proud of what I have achieved and how I worked during

this whole internship period. Sometimes I had to wait for feedback and it seems that I did not have

anything to do, but instead of doing nothing, I continued looking for things to work on, like looking

for errors in my thesis, writing my blog or working on other tasks given by Otys.

I have become a lot more professional and will use all of the gathered knowledge and experience in

my future working career.

5 Bibliography

[1] G. Singh, “Edit History for Natural Language Identification: What it is, why it is important, and

how it works.,” CommonLounge, 2018. [Online]. Available:

https://www.commonlounge.com/discussion/3ecabc3d82684d57a62ad8fbc200f43b/history.

[2] “Language Detection API,” Language Detection API, [Online]. Available:

https://detectlanguage.com/.

[3] P. Schur, “GitHub - patrickschur/language-detection: A language detection library for PHP.

Detects the language from a given text string.,” 2016 12 25. [Online]. Available:

https://github.com/patrickschur/language-detection#basic-usage.

[4] “Galician language - Wikipedia,” Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/Galician_language.

[5] Landrok, “GitHub - landrok/language-detector: A fast and reliable PHP library for detecting

languages,” GitHub, 2 11 2016. [Online]. Available: https://github.com/landrok/language-

detector/releases.

[6] Google, “Cloud Translation API - Dynamisch vertalen | Cloud Translation | Google Cloud,”

[Online]. Available: https://cloud.google.com/translate/.

[7] Google, “google-cloud-php,” Google , [Online]. Available: https://googleapis.github.io/google-

cloud-php/#/docs/google-cloud/v0.99.0/translate/translateclient.

[8] Google, “Detecting Language | Cloud Translation API | Google Cloud,” [Online]. Available:

https://cloud.google.com/translate/docs/detecting-language.

[9] C. a. CloCkWeRX, “GitHub - pear/Text_LanguageDetect - PHP library to identify human

languages from text samples.,” Pear, [Online]. Available:

https://github.com/pear/Text_LanguageDetect.

[10] Pear, “Text_LanguageDetect,” Pear, [Online]. Available:

https://pear.php.net/package/Text_LanguageDetect.

[11] Gala, “What is Machine Translation? | GALA Global,” GALA Global, [Online]. Available:

https://www.gala-global.org/what-machine-translation.

[12] O. Technologies, “What is Rules Based Machine Translation - Omniscien Technologies,”

Omniscien Technologies, [Online]. Available: https://omniscien.com/rules-based-machine-

translation/.

[13] O. Technology, “What is Statistical Machine Translation (SMT) - Omniscien Technology,”

Omniscien Technology, [Online]. Available: https://omniscien.com/?faqs=what-is-statistical-

machine-translation-smt.

[14] “Neural Machine Translation - Wikipedia,” Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/Neural_machine_translation.

[15] Aesopus, “De hond en het bot,” Volksverhalen Almanak, [Online]. Available:

https://www.beleven.org/verhaal/de_hond_en_het_bot.

[16] A. Johnstone, “Computer resurrection issue 4,” Resurrection, Summer 1992. [Online]. Available:

http://www.cs.man.ac.uk/CCS/res/res04.htm#g.

[17] Google, “Quickstart: Using Client Libraries | Cloud Translation API | Google Cloud,” Google,

[Online]. Available: https://cloud.google.com/translate/docs/quickstart-client-libraries.

[18] Google, “Translating Text | Cloud Translation API | Google Cloud,” Google Cloud, [Online].

Available: https://cloud.google.com/translate/docs/translating-text.

[19] Microsoft, “Translator Text Documentation - Quickstart, Tutorials, API reference - Azure

Cognitive Services | Microsoft Docs,” Microsoft Azure, [Online]. Available:

https://docs.microsoft.com/en-us/azure/cognitive-services/translator/.

[20] Microsoft, “Startpagina - Microsoft Azure,” Microsoft Azure, [Online]. Available:

https://portal.azure.com/#home.

[21] Y. Translate, “Developers,” Yandex Translate, [Online]. Available:

https://translate.yandex.com/developers.

[22] Nkt, “GitHub - yandex-php/translate-api: Client for Yandex.Translate API,” GitHub/Yandex,

[Online]. Available: https://github.com/yandex-php/translate-api.

[23] Sebleier, “NLTK's list of English stopwords,” GitHub Gist, 08 2010. [Online]. Available:

https://gist.github.com/sebleier/554280.

